• Title/Summary/Keyword: 협소 유로

Search Result 19, Processing Time 0.022 seconds

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Rectangular Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 사각 유로를 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Kuen;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.512-519
    • /
    • 2009
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental data. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap was performed. Auto correlation for the axial-flow velocity pattern was presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

Numerical Investigation on Turbulent Flow Characteristics in the Gap connecting with Two parallel Channels using Large Eddy Simulation (평행한 두 사각유로를 연결하는 협소유로내의 난류유동 특성에 관한 대형 와 수치 모사)

  • Hong, Seong-Ho;Seo, Jeong-Sik;Shin, Jong-Keun;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.55-60
    • /
    • 2008
  • Turbulent flow characteristics on the gap of two parallel channels are investigated using LES(large eddy simulation) approach. Two parallel channels have the same cross-section area and are connected by the narrow channel named the gap. Turbulent flow near the gap makes the flow pulsation along the streamwise direction of two channels. The flow condition is the Reynolds number of $2.5{\times}10^{-5}$. We compared the predicted results with the previous experimental results and presented the axial mean velocity, turbulent intensities, Reynolds shear stresses and turbulent kinetic energy.

  • PDF

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 두 채널을 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Hong, Seong-Ho;Shin, Jong-Kuen;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2810-2815
    • /
    • 2008
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental result. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap is presented. Auto and cross correlation for the axial-flow velocity pattern are presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

  • PDF

Counter-Current Gas-Liquid Two-Phase Flow in Narrow Rectangular Channels with Offset Strip Fins (휜이 있는 협소 사각 유로에서 대향류 기/액 2상 유동)

  • Sohn, B.H.;Kim, B.J.;Jeong, S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.229-234
    • /
    • 2001
  • An adiabatic counter-current vertical two-phase flow of air and water in narrow rectangular channels with offset strip fm was investigated experimentally. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.06 m/s and 0 to 2.5 m/s ranges, respectively. Two-phase flow regimes were classified by examining the video images of flow patterns in transparent test sections of 760 mm long and 100 mm wide channel with gaps of 3.0 and 5.0 mm. The channel average void fraction was measured by the quick-closing valve method. Unlike the flow regimes in the channels without fin, where bubbly, slug, chum, and annular flow were identified, only bubbly and chum flow regimes were found for the channels with offset strip fin. However the existence of fin in the channels showed negligible effects on the void fraction. Instead counter-current flow limitations were found to happen at lower air superficial velocity once offset strip fin was introduced in narrow rectangular channels.

  • PDF

Void Fraction and Pressure Gradient of Countercurrent Two-Phase Flow in Narrow Rectangular Channels (협소 사각유로에서 대향류 2상유동의 기공률과 압력구배)

  • 김병주;정은수;손병후
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been performed. The void fraction and the pressure gradient were investigated using air and water in 760 mm long, 100 mm wide. vertical test sections with 2, 3 and 5 mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.08 and 0 to 2.5 m/s ranges. respectively. the experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be in good agreements. However the quantitative discrepancies were hardly neglected. as the superficial gas velocities increased, the void fraction increased and the pressure gradient decreased, where the effects of the liquid superficial velocities were infinitesimal. as the gap width of the rectangular channel increased the void fraction and the 2-phase frictional pressure gradient approached those values for the round tubes. Equi-periphery diameter, rather than the hydraulic diameter, seemed to be more effective in the analysis of two-phase flow behavior.

  • PDF

Air-water Countercurrent Flow Limitation in Narrow Rectangular Channels (협소 사각유로에서 공기-물 대향류 유동한계)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.441-446
    • /
    • 2007
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been peformed. Countercurrent flow limitation (CCFL) was investigated using air and water in 760mm long, 100mm wide, vertical test sections with 1 and 3mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.125 and 0 to 3.5m/s ranges, respectively. As the gap width of rectangular channel increased the CCFL water superficial velocity decreased for the given air superficial velocity. Slight increase of the air superficial velocity resulted in the abrupt decrease of water velocity when $j_g=2{\sim}4m/s$. The critical superficial velocity of air, at which the downward flow of water was no longer allowed, also decreased with the increase of gap width. The experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be partially acceptable. However the quantitative discrepancies were hardly neglected. New correlation of CCFL was developed and showed good agreement with the experimental data.

Counter-Current Gas-Liquid Two-Phase Flow Regimes in Narrow Rectangular Channels (협소 사각 유로에서 대향류 기/액 2상 유동양식)

  • Sohn, B.H.;Kim, B.J.;Jeong, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.136-141
    • /
    • 2000
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally studied in 760 mm long and 100 mm wide test sections with 2.0 and 3.0mm gaps. The resulting data have been compared to previous transition models. For the transition from bubbly to slug flow the superficial velocity of gas increased as the gap width increased. The comparison of experimental data to the transition model developed by Taitel and Barnea showed relatively good agreement for the bubbly-to-slug transition in the case of 2mm gap width. For the criteria of Mishima and Ishii to be applicable to the slug-to-churn transition the distribution parameter should be well defined for narrow channels. Even though the gap width of narrow channels increased the superficial gas velocity did not change for the transition form chum to annular flow regime. For the chum-to-annular transition the model of Taitel and Barnea showed discrepancies with experimental data, especially in the channel with larger gap.

  • PDF

Boiling Heat Transfer in a Narrow Rectangular Channel with Offset Strip Fins (오프셋 스트립 휜이 있는 협소 사각유로의 비등열전달)

  • Kim Byong Joo;Jeong Eun Soo;Sohn Byong Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.977-983
    • /
    • 2004
  • An experimental study on saturated flow boiling heat transfer of R113 was peformed in a vertical narrow rectangular channel with offset strip fins. Two-phase pressure gradients and boiling heat transfer coefficients in an electrically heated test section were measured in the range of quality $0{\sim}0.6$, mass flux $17{\sim}43kg/m^{2}s$, and heat flux of $500{\sim}3,000W/m^2$ Two-phase friction multipliers were determined as a function of Lockhart-Martinelli parameter. Local boiling heat transfer coefficients were analysed in terms of mass flux, heat flux and local vapor quality. Correlation for boiling heat transfer coefficients was proposed, which was in good agreement with experimental data.

Numerical Investigation on the Flow Pulsation of Two Parallel Channels with Different Cross-section Areas (크기가 다른 평행한 두 채널 간의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Keun;Ahn, Deuk-Kuen;Choi, Young-Don
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.601-604
    • /
    • 2008
  • The flow pulsation of two parallel channels is investigated using RANS and URANS approaches. The parallel channels are connected with a small gap and have different cross section areas. The ratio of a right side area and a left side area ($A_R$ / $A_L$) is 0.5. Computations are conducted using a CFX code. Turbulence models adopted for RANS are Reynolds stress model and Shear Stress Transport (SST) model. The bulk Reynolds number is 60,000. Predicted results are compared with the experimental result of Lee et al. and show the flow pulsation with the frequency of about 100 Hz at the center of the gap.

  • PDF

CFD Analysis of Turbulent Heat Transfer in a Heated Rod Bundle (가열 봉다발의 난류 열전달에 대한 전산유체역학 해석)

  • In, Wang-Kee;Oh, Dong-Seok;Chun, Tae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.598-603
    • /
    • 2003
  • A CFD analysis has been performed to investigate turbulent heat transfer in a triangular rod bundle with a pitch-to-diameter ratio(P/D) of 1.06. Anisotropic turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel and the distributions of time mean velocity and temperature showing significantly improved agreement with the measurements over the linear standard ${\kappa}-{\varepsilon}$. The anisotropic turbulence models predicted turbulence structure in large flow region fairly well but could not predict the very high turbulent intensity of azimuthal velocity observed in narrow flow region(gap).

  • PDF