• Title/Summary/Keyword: 협대역 재머

Search Result 6, Processing Time 0.024 seconds

SC-FDE Design to Cope with Narrow Band Jammer (협대역 재머 대응을 위한 SC-FDE 구조 설계)

  • Ju, So-young;Jo, Sung-mi;Yu, Jeonghoon;Jeong, Eui-rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.614-616
    • /
    • 2017
  • In this paper, based on the conventional SC-FDE structure, we propose a new SC-FDE structure to cope with narrow band jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrow band jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain, and verified the performance via computer simulation.

  • PDF

A New SC-FDE Transmission Structure for Coping with Narrow Band Jammers and Reducing Pilot Overhead (협대역 재머 대응과 파일럿 오버헤드 감소를 위한 새로운 SC-FDE 전송구조)

  • Joo, So-Young;Choi, Jeung-Won;Kim, Dong-Hyun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.981-987
    • /
    • 2019
  • In this paper, we propose a new SC-FDE (single carrier frequency domain equalization) structure to cope with narrow band interference signals or jammers and reduce pilot overhead. The conventional SC-FDE structure has a problem that the receiver performance degrades severely due to difficulty in time-domain channel estimation when narrow band jammers exist. In addition, the spectral efficiency is lowered by transmitting pilot at every SC-FDE block to estimate channel response. In order to overcome those problems, the proposed structure is devised to estimate frequency domain channel directly without time domain channel estimation. To reduce the pilot overhead, several data blocks are transmitted between two pilots. The channel estimate of each data block is found through linear interpolation of two channel estimates at two pilots. By performing frequency domain channel equalization using this channel estimate, the distortion by the channel is well compensated when narrow band jammers exist. The performance of the proposed structure is confirmed by computer simulation.

Polyphase jammer suppression on DS-CDMA forward link using multi-rate techniques (순방향 DS-CDMA시스템에서 Multi-rate 기술을 이용한 협대역 재머 억제 여파기)

  • 김동구;박형일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1707-1717
    • /
    • 1998
  • Polyphase filtering techniques is used to suppress the narrowband jammer signal such as USDC TDMA overlaying the band occupied by DS-CDMA system. In the proposed jammer suppression, the received signal is separated into 64 subchannels in two stages by polyphase filtering and the location of the narrowband jammer signal is determined by measuring each subchannel power and the contaminated subchannels are simply blocked. The $E_{b}/N_{0}$ 0/ improvement of the CDMA system from jammer suppession was outstanding. The $E_{b}/N_{0}$ degradation in comparison with a performance of no jammer is around 0.8dB in the worst case. The results are also compared with those of linear prediction jammer suppression. The implementation of the ployphase jammer suppression requires great amount of data processing and computation compared to linear predication filter. Thus it is more appropriate to implement with a ASIC rather than WITH several DSPs for user terminals of forward link.

  • PDF

Design of SC-FDE Transmission Structure to Cope with Narrow Band Interference (협대역 간섭신호 대응을 위한 SC-FDE 전송 구조 설계)

  • Joo, So-Young;Jo, Sung-Mi;Hwang, Chan-Ho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.787-793
    • /
    • 2018
  • In this paper, we propose a new single carrier - frequency domain equalization (SC-FDE) structure to cope with narrow band interference. In the conventional SC-FDE structure, when a high-power narrow band interference exists, channel estimation and data recovery is difficult. To relieve from this problem, this paper proposes a new SC-FDE frame structure to enable frequency-domain channel estimation in the environments that exist narrow band interference. Specifically, in the conventional method, the channel estimation is performed in time-domain first and from that, the frequency-domain channel is obtained by Fourier transform. In contrast, we proposed a new SC-FDE structure to enable frequency-domain channel estimation directly from received signals without time-domain channel estimation. The receiver performance improvement is verified through computer simulation. According to the results, the proposed technique can detect the signal with less than 2 dB loss compared with jammer-free environments, while the conventional method does not communicate with each other.

A Super-resolution TDOA estimator using Matrix Pencil Method (Matrix Pencil Method를 이용한 고분해능 TDOA 추정 기법)

  • Ko, Jae Young;Cho, Deuk Jae;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.833-838
    • /
    • 2012
  • TDOA which is one of the position estimation methods is used on indoor positioning, jammer localization, rescue of life, etc. due to high accuracy and simple structure. This paper proposes the super-resolution TDOA estimator using MPM(Matrix Pencil Method). The proposed estimator has more accuracy and is applicable to narrowband signal compared with the conventional cross-correlation. Furthermore, its complexity is low because obtained data directly is used for construction of matrix unlike the MUSIC(Multiple Signal Classification) which is one of the well-known super-resolution estimator using covariance matrix. To validate the performance of proposed estimator, errors of estimation and computational burden is compared to MUSIC through software simulation.