• Title/Summary/Keyword: 혐기 소화 상징액

Search Result 8, Processing Time 0.026 seconds

Correlation between operation factors and nitritation using anaerobic digester supernatant at ordinary temperature (상온 조건에서 혐기 소화 상징액을 이용한 아질산화 반응과 운전 인자의 상관성 분석)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.244-249
    • /
    • 2016
  • Anaerobic digester supernatant including high concentrations of nitrogen is recycled to water treatment line and make pollutant load increase in municipal wastewater treatment plant(MWTP). To treat nitrogen in anaerobic digester supernatant is suggested the method of MWTP retrofit. In this study, the lab scale reactor was operated about 200 days using supernatant of anaerobic digester. The results could draw operation condition that ammonium nitrogen removal efficiency more than 90% and nitrite conversion efficiency over 70%. Correlation between operation efficiency and operation factors was analyzed based on the operation results. Ammonium nitrogen remove efficiency and nitrite conversion efficiency were related to solid retention time (SRT), ammonium nitrogen load and ammonium nitrogen loading per unit mixed liquer suspended solid (MLSS). Results of this study can be used effective data on nitritation of supernatant of anaerobic digester, and be expected to increase availability of nitritation.

characteristic of foaming in nitritation reactor using anaerobic digester supernatant and livestock wastewater (혐기 소화 상징액과 가축 분뇨를 대상으로 한 아질산화 반응조 내 foaming 특성)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.433-441
    • /
    • 2014
  • It has been known that sewage containing high-concentration nitrogen affects the efficiency of municipal wastewater treatment plants harmfully. Therefore, research has been actively conducted to treat sewage containing high-concentration nitrogen. The current study has analyzed organic compounds, conducted foaming tests, and operated a laboratory-level nitritation reactor with the subjects of anaerobic digester supernatant and livestock wastewater which are the typical kinds of sewage containing high-concentration nitrogen. According to the results of analyzing organic compounds, soluble inert components form the largest part of anaerobic digester supernatant while particle biodegradable components occupy the most part of livestock wastewater. About the retention time proper for the reaction of nitritation, anaerobic digester supernatant shows 2 days while livestock wastewater indicates 6 days. It seems that the difference in the proper retention time is resulted from the difference of properties in organic compounds and ammonium nitrogen concentration. In addition, livestock wastewater's reactor foam is generated comparatively more than anaerobic digester supernatant's, but it tends to be eliminated faster. It is expected that the findings of this study can be utilized as foundational data afterwards in applying the reaction of nitritation to municipal wastewater treatment plants.

Night Soil Treatment by Anaerobic Sequencing Batch Reactor (혐기성 연속 회분식 반응조에 의한 분뇨처리)

  • 허준무;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • 운전 온도 $35^{\circ}C$, 평균 유기물부하 $3.1{\;}kgCOD/m^3/day$ 및 수리학적체류시간 10일에서 혐기성 연속회분식공정에 의한 분뇨처리를 수행하였다. 공정의 평가는 대조 소화조로 완전혼합형의 소화조와 병행하여 수행되었다. 본 실험에서 분뇨는 고농도의 암모니아성 질소와 침전성 고형물을 함유하고 있음에도 불구하고 희석 없이 소화가 가능하였다. 혐기성 연속회분식공정에서 고형물은 급속하게 증가하여 완전혼합형의 대조 소화조에 비하여 소화조내 고형물(biomass)의 농도가 2.4배로 증가하였고, 가스발생량에 있어서도 대조 소화조에 비해 현격한 증가를 보였으며 그 증가율은 205~220%에 달했다. 부가적인 침전 시설이 없이도 혐기성 연속회분식공정의 유출수질이 대조 소화조 보다 높게 나타났는데 상징액 기준으로 휘발성고형물 제거율은 혐기성 연속회분식공정이 대조 소화조 보다 12~14% 높았다. 한편, 혐기성 연속회분식공정의 운전인자로 반응/침강비(R/T ratio)를 조사한 결과 R/T비가 1인 경우가 3의 경우보다 가스발생량, 메탄함량 및 유기물 제거율이 약간 높았으나 큰 차이는 없었다. 위의 실험결과들로부터 혐기성 연속회분식공정은 고농도의 암모니아성 질소와 침전성 유기물을 함유하고 있는 분뇨의 처리에 효과적이고 안정적인 공정으로 판단된다.

  • PDF

Nitritation at Various Temperature Conditions - Using Anaerobic Digester Supernatant (다양한 온도 조건에서 아질산화 반응 유도 - 혐기 소화 상징액을 대상으로)

  • Gil, Kyung-Ik;Im, Ji-Yeol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.237-243
    • /
    • 2011
  • As the effluent quality standard of the municipal wastewater treatment plant (MWTP) has been strengthened, the treatment of the recycle water containing high concentration of ammonium nitrogen has been considered as one of retrofit methods for upgrading the exising MWTPs. In this study, nitritation, economic nitrogen removal process, was induced by laboratory-scale reactor at the $35^{\circ}C$, $20^{\circ}C$, and $10^{\circ}C$ temperature conditions using anaerobic digester supernatant. The stable nitritation was achieved over $20^{\circ}C$, but nitrification was induced at $10^{\circ}C$. It means that the nitritation was affected by SRT and temperature. SRT, demanded for nitritation, is changed according to the temperature. Therefore, it is considered that SRT and temperature are important factors in nitritation. Also, it is approved that inducing the ammonium nitrogen removal and the nitritation are more beneficial over $20^{\circ}C$. The conclusion of this study can be used for the important basic reference when nitritation process is applied for MWTPs.

A Mathematical Model for the Behavior of Nitrogen and Phosphorus During the Aerobic Digestion (호기성 소화과정 중 질소 및 인의 거동에 대한 수학적 모형)

  • Choung, Youn Kyoo;Ko, Kwang Baik;Park, Joon Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.635-644
    • /
    • 1994
  • A mathematical model was developed to predict the concentrations of various nutrients in supernatants during aerobic digestion which is suitable to be employed in small wastewater treatment plants with such advantages as low capital cost and stable process. Significant reactions were determined with observing the behavior of nitrgen and phosphorus, and the model equations were built up in the form of simultaneous differential equations considering Mass Balance. Laboratory batch experiments were carried out at $20^{\circ}C$ and pH $7.5{\pm}0.5$ on the aerobic digestion of waste activated sludge at different solid levels. Nonlinear regression analysis was performed to estimate various reaction rate constants. The developed model can predict the behavior of Biomass N, dissolved organic N, $NH_4{^-}$-N, $NO_x{^-}$-N, and Biomass P, dissolved organic P, $PO_4{^-}$-P in aerobic digestion process. In this study, the results of simulation showed that dissolved nutrients had more effects on supernatants than nutrients in biomass, and phosphorus was more effective on supernatants than nitrogen.

  • PDF

Effect of Influent COD Fraction on Nitritation from Wastewater and Piggery wastewater (유입수 유기물 성상이 반류수와 가축분뇨 아질산화 반응에 미치는 영향)

  • Gil, Kyun-Gik;Im, Ji-Yeol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.185-192
    • /
    • 2011
  • BNR process is an effective method to remove high strength nitrogen included in wastewater and piggery wastewater. There have been many former studies about the induction of nitritation which have many advantages than full nitrification and the impacting factors on nitritation. Especially, it is reported that organic matter has a relation with nitritation. In this study, laboratory sacle reactor was operated using effluent of anaerobic digester, piggery wastewater and anaerobic digester effluent of piggery wastewater. After analyzing the operating results, the impact of organic matter on nitritation was analyzed by classified COD fractions. It was showed that nitritation is affected by organic matter especially by Ss. In conclusion, organic matter should be managed not just as a single gross parameter but in a classified form.

Lithoautotrophic Nitrogen Removal from Ammonium-rich Wastewater in Aerobic Upflow Sludge Bed(AUSB) Reactor (호기성 상향류 슬러지상 반응조를 이용한 고농도 암모늄 함유폐수의 독립영양 질소제거)

  • Ahn, Young-Ho;Choi, Hoon-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.852-859
    • /
    • 2006
  • The novel microbial process such as Anammox(anaerobic ammonium oxidation) and Canon(completely autotrophic nitrogen removal over nitrite) processes is promising biotechnology to remove nitrogen from ammonium-rich wastewater like anaerobic sludge digester liquid. In this research, a new Canon-type nitrogen removal process adopting upflow granular sludge bed type configuration was investigated on its feasibility and process performance, using synthetic wastewater and sludge digester liquids. Air as an oxygen source was provided in an external aeration chamber with flow recirculation. In the first experiment using the synthetic wastewater(up to 110 mg $NH_4$-N $L^{-1}$), the ammonium removal was about 95%(92% for T-N) at effective hydraulic retention time(HRT) for 3.8 days. In the second experiment using the sludge digester liquids($438{\pm}26$ mg $NH_4$-N $L^{-1}$), the total nitrogen removal was $94{\pm}1.7%$ at HRT for 5.4 days and $76{\pm}1.5%$ at HRT for 3.8 days, respectively. Little nitrite and nitrate were observed in the effluent of both experiments. The process revealed quite a lower oxygen($0.29{\sim}0.59$ g $O_2$ $g^{-1}N$) and less alkalinity($3.1{\sim}3.4$ g $CaCO_3$ $g^{-1}N$) consumption as compared to other new technology in microbial nitrogen removal. The process also offers the economical compact reactor configuration with excellent biomass retention, resulting in lower cost for investment and maintenance.

Nitritation of Anaerobic Digester Supernatant from Sludge Processing in MWTP (하수처리장 혐기성 소화조 상징액의 아질산화 반응 연구)

  • Gil, Kyung-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.540-545
    • /
    • 2006
  • The anaerobic digester supernatant (ADS) with high $NH_4-N$ concentration often results in a $NH_4-N$ overloading to the mainstream process of municipal wastewater treatment plant (MWTP). The nitrogen removal from the ADS is therefore important in order to achieve a stable mainstream process performance as well as to prevent $NH_4-N$ overloading due to ADS. Recently because of several advantages compared to the full nitrification, many works have shown interests in controlling the build-up of $NO_2-N$ in nitritation processes. The application of nitritation could save the aeration power compared to the full nitrification processes. In addition, the denitrification of $NO_2-N$ could reduce organic carbon requirements compared to the $NO_3-N$ denitrification. The purpose of this research was to find out the characteristics of the ADS nitritation and $NO_2-N$ accumulating factors from the laboratory reactor study. As a result based on the long-term laboratory experiment, it can be concluded that the degree of nitritation was closely related with the availability of alkalinity, free ammonia (FA), solid retention time (SRT) and solid concentration in the nitritation reactor.