• 제목/요약/키워드: 혐기성 발효

검색결과 156건 처리시간 0.019초

느타리버섯 폐면배지의 발효조건별 이화학적 특성 (Physical and Chemical Characteristics of Cotton Waste Substrate According to Fermentation Conditions for Oyster Mushroom Bed Cultivation)

  • 하태문;윤선미;주영철;성재모
    • 한국균학회지
    • /
    • 제36권2호
    • /
    • pp.163-171
    • /
    • 2008
  • 느타리버섯 폐면배지 야외발효기간중 피복재 종류별 배지의 이화학적 변화와 균배양 및 생육특성을 조사한 결과는 다음과 같다. 배지온도는 호기성발효 유도처리구에서 발효 1일째부터 급격히 증가하여 발효 5일${\sim}$발효 7일째 최고온도 $75^{\circ}C$ 도달 후 천천히 낮아졌고, 배지의 깊이에 따른 온도차이는 크지 않았다. 혐기성발효 유도처리구에서 배지온도변화의 양상은 호기성발효 유도처리구와 비슷하였으나 최고온도가 약 $60^{\circ}C$ 정도였고 배지 깊이별로 온도차이가 컸으며 배지 깊이 10 cm 부위에서 높았다. 배지내 수분함량은 두 처리구 모두 발효기간이 경과할수록 감소하였고, 호기성발효 유도처리구가 혐기성발효 유도처리구보다 수분함량 감소가 많았다. 살균전.후의 배지수분함량변화는 살균 시 수분 보충으로 살균 후 수분함량이 다소 증가하였다. 배지 pH는 호기성발효 유도처리구에서 발효기간이 경과함에 따라 높아져 발효 $9{\sim}12$일째 pH 8.9까지 상승하였고, 혐기성발효 유도처리구는 배지깊이 30 cm와 50 cm 부위에서 pH $5.0{\sim}5.6$ 정도로 낮아졌다. 배지 총 탄소 함량은 두 처리구 모두 발효기간의 경과에 따라 감소하였으나 호기성발효 유도처리구가 혐기성발효 유도처리구보다 다소 낮았고, 총질소 함량은 발효기간이 경과함에 따라 높아지는 경향이었으며, 호기성발효 유도처리구에서 혐기성발효 유도처리구보다 다소 높았다. 배지내 산소농도는 호기성발효 유도처리구 발효 6일까지 감소한 후 9일째부터 다시 증가하는 경향을 보였고, 혐기성발효 유도처리구는 배지깊이 10 cm 부위를 제외한 나머지 부위에서 1% 이하로 낮았다. 배지내 이산화탄소농도는 산소농도 변화와 반대로 호기성발효 유도처리구 발효 6일까지 증가한 후 9일째부터 다시 감소하는 경향을 보였고, 혐기성발효 유도처리구는 지속적으로 증가하였다. 암모니아 함량은 호기성발효 유도처리구의 배지 깊이 10 cm와 30 cm 부위에서는 10 ppm 이하, 50 cm 부위에서 약 $12{\sim}19\;ppm$이었고, 혐기성발효 유도처리구의 배지깊이 10 cm 부위에서는 10 ppm 이하, 30 cm와 50 cm 깊이에서는 $20{\sim}85\;ppm$ 정도로 높았다. 배지발효조건 및 발효기간별 균배양일수는 호기성발효 유도처리구에서 $12{\sim}14$일로 혐기성발효 유도처리구 $15{\sim}19$일보다 짧았고, 초발이 소요일수는 호기성발효 유도처리구 $20{\sim}23$일로 혐기성발효 유도처리구 $27{\sim}32$일보다 짧았다. 배양율은 호기성발효 유도처리구 발효 3일 처리구를 제외한 나머지 처리구에서 100%로 높았고, 혐기성발효 유도처리구는 $50{\sim}85%$ 낮았다. 수량은 호기성발효 유도처리구에서 발효기간이 길수록 수량이 증가하여 발효9일째 23.6 kg(건조배지 44 kg당)으로 높았다.

혐기성 박테리아, 효모 및 곰팡이로 제조된 synbiotics 첨가 축우용 완전혼합사료의 성분 변화 및 발효 특성에 미치는 영향 (Effects of Supplemental Synbiotics Composed of Anaerobic Bacteria, Yeast and Mold on the Change of Chemical Composition and Fermentation Characteristics of Total Mixed Ration for Cattle)

  • 이신자;신년학;정호식;문여황;이상석;이성실
    • 생명과학회지
    • /
    • 제19권2호
    • /
    • pp.241-248
    • /
    • 2009
  • 본 시험은 혐기성 박테리아, 효모 및 곰팡이로 제조한 synbiotics를 TMR에 첨가하여 7일 동안 발효시킨 후, 성분함량의 변화 및 개봉하여 공기에 노출시킨 기간에 따른 발효특성의 변화를 알아보기 위하여 수행되었다. 처리구는 무처리구인 US구, 혐기성 박테리아와 prebiotics로 구성된 BS구, 혐기성 효모와 prebiotics로 구성된 YS, 혐기성 곰팡이와 prebiotics로 구성된 MS구, 혐기성 박테리아와 혐기성 곰팡이 및 prebiotics를 조합한 BMS구, 혐기성 효모와 혐기성 곰팡이 그리고 prebiotics를 조합한 YMS구, 혐기성 박테리아와 혐기성 효모 그리고 prebiotics를 조합한 BYS구, 혐기성 박테리아, 효모 및 곰팡이 복합물과 prebiotics를 조합한 BMYS구로서 총 8 처리구로 나누었다. 개봉 후 노출기간(1, 3, 5, 7, 14, 및 21일)별 3반복으로 총 144개의 bag을 공시사료로 제조하였다. 혐기 발효 TMR의 개봉 후 성분함량과 공기노출에 따른 발효특성에 대한 결과를 요약하면 다음과 같다. 혐기 발효시킨 TMR의 수분함량은 약 41${\sim}$45% 범위로서원 사료와 비슷한 수준이었다. 조단백질 함량은 기초 사료에 비해 무처리 대조구에서는 11.7${\sim}$14.8% 줄어들었으나, BMYS 처리구에서는 약 11%가 증가되었다. BMYS 처리구에서는 조섬유 함량이 기초사료에 비해 약 32% 감소되었고, NDF 및 ADF도 각각 15.5% 및 26.1%가 감소되었다. 공시사료의 내부 온도는 개봉 7일째에 전 처리구에서 높게 나타났다. 발효 TMR의 pH는 개봉 5일까지는 처리 간에 차이가 없었으나, 개봉 7일 이후부터는 높아졌고, BMS구에서 개봉 14일째에 가장 높았다(P<0.05). 산에 대한 완충능력은 개봉 후, 시간이 경과함에 따라 산의 첨가량이 많아져 완충능력이 높아지는 경향으로서 대체로 개봉 7일 이후부터 시작하여 14일째에 peak를 이루었다. 발효 TMR 즙액의 $NH_3-N$ 농도는 개봉 후 5일째에 peak를 이루었으며, 휘발성지방산 함량은 매우 낮은 수준이었다. 이상의 결과로 볼 때, BMYS 처리구에서 단백질 함량은 높아지고, 섬유소함량은 낮아졌지만, 공기 중 노출기간별 발효특성에서는 혐기성 synbiotics의 첨가에 따른 영향은 없는 것으로 나타났다.

유기성 액상 슬러지로부터 휘발성 지방산의 회수를 위한 혐기성 막-발효기의 적용 (Application of Anaerobic Membrane-Fermenter for the Recovery of Volatile Fatty Acids from Organic Liquid Sludge)

  • 김종오;정종태
    • 멤브레인
    • /
    • 제14권1호
    • /
    • pp.37-43
    • /
    • 2004
  • 휘발성 지방산의 생성 및 회수를 위한 분리막의 유효성을 실험적으로 검토한 결과, 분리막의 적용에 의해 발효조 내의 부유고형물 농도, 유기산 생성균수 및 유기산 농도가 증가하였다. 혐기성 발효액의 고액분리 및 발효 효율향상을 위한 분리막의 적용은 발효조 내의 관련 미생물 농도를 증가시키고 따라서 분리막을 적용하지 않은 경우에 비해 유기산 생성효율이 훨씬 증가하였다. 분리막이 결합된 산 발효조의 적용은 유기성 슬러지로부터 휘발성 지방산의 회수 효율증대에 효과적인 적용기술이라 판단된다.

혐기성 메탄 발효를 이용한 다양한 유기성 폐기물의 분해 특성

  • 김중곤;조건형;정효기;전영남;김시욱
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.374-377
    • /
    • 2003
  • 본 연구는 각종 유기성 폐기물의 혐기소화시 혐기성 분해 특성에 대해 알아보고자 하였다. 실험에 적용된 유기성 폐기물의 종류는 음식폐기물, 축산폐기물, 농산부산물 이었으며 기질과 접종액을 1:1로 혼합하여 회분식으로 실험을 수행하였고, 이때 발효조내의 TS, VS, sCOD 변화 및 가스발생량을 측정하였다. 음식폐기물의 경우 실험초기에 혐기성 분해가 일어났으며, 농산부산물의 경우 실험 종반부에 혐기성 분해가 일어났다. 반면 축산폐기물의 경우 실험초기에 한차례 혐기성 분해가 이루어지고 종반부에서 다시 혐기성 분해가 이루어짐을 알 수 있었다.

  • PDF

혐기성발효에 의한 인축분뇨의 메탄가스 생산

  • 박영대
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1979년도 추계학술대회 심포지움
    • /
    • pp.240.2-241
    • /
    • 1979
  • 이태리의 Volta(1776)가 식물성 유기물을 혐기성으로 처리하면 메탄가스가 발생된다는 사실을 발견한 이래 많은 연구자들이 메탄가스에 관심을 가졌으며 1896년 영국의 Exeter에서는 분뇨의 메탄가스로 처음 가로등을 설치하였다. 그 후 메탄가스를 이용하기 위한 여러가지의 연구와 이용시설이 개발되어 양차 세계대전중에는 연료난에 직면한 독일, 영국 불란서의 농민들은 인축분뇨로 메탄가스를 생산하여 연료 및 전기, 자동차 및 트럭타의 연료로 사용하였고 특히 독일은 당시 유럽의 메탄가스연구의 중심지였다. 그러나 종전후에는 전후의 평화와 아랍국가들의 oil boom으로 대체에너지로서의 메탄가스이용 연구는 한때 관심이 적었으나 메탄발효(혐기성발효)는 에너지를 생산할 뿐만아니라 분뇨, 도시의 오수 및 공장폐수의 공해처리와 폐자원의 활용면에서 오늘날 메탄가스의 이용연구는 세계적으로 열을 올리고 있는 연구분야이다.

  • PDF

전기부상과 혐기성 수소 발효 공정의 결합을 통한 미세조류 제거 및 에너지 생산 (Microalgae Removal and Energy Production by Combined Electro-flotation and Anaerobic Hydrogen Fermentation Processes)

  • 이채영;나동채;최재민;강두선
    • 유기물자원화
    • /
    • 제20권3호
    • /
    • pp.83-88
    • /
    • 2012
  • 부영양화로 인한 조류의 과도한 번식은 하천과 호수의 수질에 심각한 문제를 야기하고 있다. 따라서 하천과 호수의 수질 오염 방지를 위해서는 물리화학적 또는 생물학적 처리를 통해 효과적인 조류 제거가 필요하다. 본 연구에서는 전기부상과 혐기성 수소 발효 공정의 연계를 통해 효과적인 조류 제거와 에너지를 생산하고자 하였다. Chlorophyll a를 기준으로 전기부상에 의한 조류 제거효율은 전류 증가에 따라 증가하였으며 최대 95.9%로 나타났다. 제거된 조류로부터 에너지를 회수하기 위하여 혐기성 수소 발효 타당성을 조사하였다. 조류와 초음파로 전처리를 수행한 조류의 최종 수소 수율은 각각 17.3및 61.1ml $H_2/g$ dcw(dry cell weight)로 나타났다. 조류의 초음파 전처리는 가수분해 속도를 증가시켜 최대 수소 수율을 3.4배 향상시키는 것으로 나타났다.

혐기성 발효에 의한 생물학적 수소생산에 관한 연구 (A Study of Biological Hydrogen Gas Production under Anaerobic Fermentation)

  • 윤우현;김현갑;이태진
    • 유기물자원화
    • /
    • 제14권1호
    • /
    • pp.131-138
    • /
    • 2006
  • 본 연구는 혐기성 발효를 이용한 수소생산과정에서 pH를 일정하게 유지한 상태에서 안정적인 수소를 생산하기 위한 최적 pH를 찾고자 하였다. 실험결과 pH 6이었을 때 최적의 조건이었으며 이때 수소생산량은 1175.87 mL/L 이고, 이론적 수소 전환율은 22.51 %였다. pH 5는 901.77 mL/L의 수소가 발생되었으며, 수소 전환율은 17.48 %, pH 7은 454.26 mL/L의 수소생산량과 8.74 %의 수소 전환율을 나타내었다. 그리고 pH 7과 8에서는 각각 452.08 mL/L와 82.25 mL/L의 저조한 수소 생산량을 나타내었다. 자당의 혐기성 발효를 통한 유기산 생성에 있어서 pH가 7과 8에서는 propionate가 주로 관찰되었으나 pH가 5와 6인 영역 에서는 butyrate의 생성이 두드러지는 결과가 나타났다.

  • PDF

음식폐기물 처리용 혐기성 산 발효조로부터 알코올발효 균주의 분리 및 특성 (Isolation and Characterization of An Alcohol Fermentation Strain from Anaerobic Acid Fermentor to Treat Food Wastes)

  • 김중곤;한귀환;유진철;성치남;김성준;김시욱
    • KSBB Journal
    • /
    • 제21권6호
    • /
    • pp.451-455
    • /
    • 2006
  • 본 실험실에서는 음식폐기물을 효율적으로 소화처리하기위해 Pilot 규모 (10톤)의 3단계 메탄 발효 공정을 개발하여 운전하고 있다. 3단계 메탄발효시스템은 반혐기성 가수분해조, 혐기성 산발효조, 혐기성 메탄발효조로 구성되어 있으며, 이 가운데 두 번째 공정인 혐기성 산발효조로부터 알코올발효능이 우수한 균주 KA4를 분리하였다. 세포의 형태는 타원형 모양이며, 크기는 $5.5-6.5{\times}3.5-4.5\;{\mu}m$ 이었고, 26S rDNA D1/D2 rDNA sequence를 분석한 결과를 바탕으로 Saccharomyces cerevisiae KA4로 명명하였다. 이 균주를 YM 배지에서 배양하였을 경우 $30-35^{\circ}C$에서 최대 생장을 보였으며, 배지내의 초기 에탄올 농도가 5% (v/v)까지는 생장에 영향을 받지 않았으나 그 이상에서는 생장에 저해를 받았고 7% 이상에서는 생장하지 못하였다. 한편 초기 50% (w/v)까지의 당 농도에서는 생장이 가능하였으나 잔류 당 농도를 고려할 때 에탄올 발효를 위한 최적 당 농도는 10%이었다. 이 농도의 당을 이용하여 초기 pH4에서 10까지의 넓은 범위에서 에탄올 발효가 가능하였으며 최적 pH는 6이었다 이 때 에탄올 생산량은 7.4%이었으며, 에탄올 생산수율은 2.87 mol EtOH/mol glucose이었다.

미생물에 의한 수소생산: Dark Anaerobic Fermentation and Photo-biological Process (Microbial hydrogen production: Dark Anaerobic Fermentation and Photo-biological Process)

  • 김미선;백진숙
    • KSBB Journal
    • /
    • 제20권6호
    • /
    • pp.393-400
    • /
    • 2005
  • 수소를 생산하는 미생물은 크게 광합성 세균(photosynthetic bacteria), 혐기성세균(non-photosynthetic anaerobic bacteria), 조류(algae) 등으로 구분되고, 이들의 수소 생성 기작, 사용가능기질 및 수소 발생량은 상당한 차이가 있다. 광합성세균은 Rhodospirillaceae, Chromatiaceae 및 Chlorobiaceae로 구분되며, 이는 각각 홍색비유황세균(purple non-sulfur bacteria), 홍색유황세균(purple sulfur bacteria), 녹색유황세균(green sulfur bacteria)으로 통칭된다. 혐기성 세균은 절대 또는 통성혐기세균중 일부가 수소생산에 관여하며, 조류는 녹조류(green algae)와 남조류(blue-green algae, cyanobacteria)가 알려져 있다. 생물학적 수소생산 기술은 (1) 녹조류(green algae)가 광합성 메카니즘에 의해 수소를 생산하는 직접 물 분해 수소생산(direct bio-photolysis) (2) 광합성 작용에 의해 물을 분해하여 산소를 발생하고, 동시에 공기 중 이산화탄소를 고정하여 고분자 저장물질로 균체 내에 저장한 후 혐기 발효 또는 광합성 발효에 의해 수소를 발생하는 간접 물 분해 수소생산(indirect bio-photolysis or two stage photolysis) (3) 빛이 존재하는 혐기상태 배양 조건에서 홍색 세균에 의한 광합성 발효(photo-fermentation) 또는 (4) 광이 존재하지 않는 조건에서 혐기 미생물에 의해 수소와 유기산을 내는 혐기 발효(dark anaerobic fermentation) (5) 균체 외(in virro) 수소 발생 (6) 일산화탄소 가스 전환 반응(microbial gas shift reaction)에 의한 수소 생산 기술로 구분할 수 있다. 물로부터 생물학적 기술에 의한 수소생산은 공기 중의 이산화탄소를 고정하고, 수소와 산소를 발생하는 원천기술로써 오래 전부터 미국, 유럽에서 태양에너지를 이용하는 광합성 미생물의 분리, 개선 및 반응기에 관한 연구가 축적되어 왔으며, 유기물 즉 바이오매스로부터 혐기 및 광합성 발효를 연속적으로 적용하는 기술은 비교적 최근에 일본을 비롯한 유기성 폐기물이 많은 국가에서 수소에너지 생산과 유기성 폐기물 처리라는 두 가지 목적에 부합하는 연구로써 활발히 진행되고 있다. 유기성 폐기물이나 폐수와 같은 수분함량이 높은 바이오매스는 대부분이 매립처리 되는 실정이지만 높은 수분 함량 때문에 매립 시 발생하는 침출수는 환경오염의 주범으로 가까운 장래에는 매립도 금지될 전망이다. 이와 같은 수소에너지 생산기술과 이용시스템 개발은 화석연료 사용을 최소화 할 수 있으며, 국내에서 다량 발생하는 유기성 폐기물을 이용한 에너지 생산으로 자원 강대국 입지에 설 수 있다. 미생물에 의한 수소생산 기술은 청정에너지 생산과 아울러, 동시에 산소 발생, 공기 중 이산화탄소 고정, 식품공장 폐수 및 음식쓰레기와 같은 유기성 폐기물 처리 등 환경에 이로운 방향으로 진행될 뿐만 아니라, 미생물 자체가 갖는 생물 산업성도 높아서 비타민류, 천연색소, 피부암 치료제등의 고부가가치 의약품 생산도 활성화할 수 있다.

ABR과 ASBR 형태에 따른 혐기성 메탄 발효 운전 성능 평가 (Performance Evaluation of ABR and ASBR for Anaerobic Methane Fermentation)

  • 이채영;이세욱
    • 유기물자원화
    • /
    • 제19권2호
    • /
    • pp.49-54
    • /
    • 2011
  • 본 연구는 혐기성 수소 발효 반응조의 유출수를 기질로 이용하여 anaerobic baffled reactor (ABR) 및 anaerobic sequencing batch reactor (ASBR) 형태에 따른 혐기성 메탄 발효 성능을 평가하였다. 두 개의 반응조는 유기물 부하율 $1.0kg\;COD/m^3{\cdot}d$와 수리학적 체류시간 20일에서 운전을 수행하였다. ABR과 ASBR의 초기 운전 기간에서 메탄 발생량은 각각 0.04 L/L/d와 0.19 L/L/d로 나타났으며, ABR과 ASBR의 최대 메탄 발생량은 각각 0.25 L/L/d와 0.31 L/L/d로 나타났다. ABR과 ASBR의 초기 운전 기간에서 COD 제거율은 각각 89%와 92%로 나타났다. 정상 상태에 도달한 후에는 ABR과 ASBR의 COD 및 VS의 제거율은 각각 90% 이상 유지되었다. 비메탄 활성도는 미생물이 기질에 적응함에 따라 반응조에 상관없이 증가하였다.