• 제목/요약/키워드: 혐기성 발효액

Search Result 31, Processing Time 0.023 seconds

Removal of Nitrogen and Phosphorus in Anaerobic Fermentation Supernatant by Struvite Crystallization (Struvite 결정화를 이용한 혐기성 발효액의 질소와 인 제거)

  • Kim, Jongoh;Jung, Jongtae;Kim, Harkkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.5-12
    • /
    • 2006
  • This study was conducted to investigate the effect of operational parameters such as dosage of magnesium and phosphate, pH, reaction time and existence crystal core for the removal of nitrogen and phosphorus in anaerobic fermentation supernatant by struvite crystallization. Optimal mole ratio of $Mg^{2+}:NH_4{^+}:PO_4{^{3-}}$ was 1.2:1.0:1.2. Under the optimal molar ratio, removal ratio and reaction rate constant of $NH_4{^+}-N$ and $PO_4{^{3-}}-P$ were 79.2, 96.8%, 0.157 and $0.344min^{-1}$, respectively. Optimal pH and reaction time were 11 and 10 minutes, respectively, in the optimal molar ratio. Residual concentration of $NH_4{^+}-N$ and $PO_4{^{3-}}-P$ showed lowest value with 1 g/L of crystal core addition. SEM analysis of struvite crystallization with crystal core showed higher crystal core growth than that of without crystal core. Struvite precipitate proved to be orthorhomic crystal structure by XRD analysis.

  • PDF

Application of Anaerobic Membrane-Fermenter for the Recovery of Volatile Fatty Acids from Organic Liquid Sludge (유기성 액상 슬러지로부터 휘발성 지방산의 회수를 위한 혐기성 막-발효기의 적용)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2004
  • As the experimental results of membrane application for the production and recovery of volatile fatty acids, suspended solids concentration, the number of acid producing bacteria and organic acid concentration increased with membrane coupling in the fermenter. The application of membrane for the efficiency increase of solid-liquid separation and fermentation made the number of acid producing bacteria increase in the fermenter, thus acid forming rate showed higher value than that of membrane-free fermenter. Membrane-coupled fermenter was believed to be an effective technology for the improvement of recovery efficiency of volatile fatty acids from organic sludge.

혐기성 메탄 발효를 이용한 다양한 유기성 폐기물의 분해 특성

  • Kim, Jung-Gon;Jo, Geon-Hyeong;Jeong, Hyo-Gi;Jeon, Yeong-Nam;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.374-377
    • /
    • 2003
  • The purpose of this study was to investigate the characteristics of anaerobic methane fermentation using several organic wastes. The substrates used in this study were food wastes, vegetable wastes, and cow manure. The substrates were mixed with inocula (mixed methanogenic fluid) at a ratio of 1:1, and several parameters such as TS, VS, sCOD, and biogas production have been monitored. Anaerobic degradation of food wastes were occurred in the intial stage of cultivation, whereas that of vegetable wastes were occurred in the late stage. However, in case of cow manure, the degradation was occurred two times both in the intial and the late stage of reaction.

  • PDF

Effects of Residual Food Fermentation Solution on the production of Lettuce(Lactuca sativa L.) (상추에 대한 남은 음식물 혐기 발효액의 시용 효과)

  • Chang, Ki-Woon;Yu, Young-Seok;Jung, Yun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.111-116
    • /
    • 2001
  • As part of the recycling methods, residual food through the anaerobic fermentation process was decomposed into methane gas and fermentation liquid. The research was conducted to measure the effect of application of fermentation liquid on chemical properties of soil and plant growth according to application rate and separate manure at the base of nitrogen in fermentation liquid. The fermentation liquid contained 0.52% nitrogen was applied in treatments by standard fertilizer. The treatments were composed of the control only with chemical fertilizer and N-50, N-100-4, N-100-8 were each of applied with 50, 100(6 times), 100(3 times)% of fermentation liquid contrast to standard fertilizer. Properties of fermentation liquid was high EC because of waster soluble organic compounds as well as much of salts and also contained a lot of suspended solid. The changes of soil chemical properties little occurred in before and after of experiment but EC and content of ex. Ca in soil were increased. Fresh weigh in treatments applied with fermentation is high than that of control but the difference between treatments little showed. The above result means if fermentation liquid be used instead of chemical fertilizer the volume of used fermentation liquid will be reduced by 50% of present standard fertilizer.

  • PDF

Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems (실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리)

  • Heo, Ahn-Hee;Lee, Eun-Young;Kim, Hee-Jun;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1231-1238
    • /
    • 2008
  • This study was performed to evaluate the treatability of food waste leachate using lab-scale two-phase anaerobic digestion system. Effects of influent pH, hydraulic retention time (HRT), and recycle of methanogenic reactor effluent to the thermophilic acidogenic reactors were investigated. For methanogenic reactors, effects of internal solids recycle and temperature were studied. Performance of the acidogenic reactors was stable under the conditions of influent pH of 6.0 and HRT of 2 d with the recycle of methanogenic reactor effluent, and acidification and VS removal efficiency were about 30% and 40%, respectively. Up to the organic loading rate (OLR) of 7 g COD/L/d, effluent SCOD values of mesophilic and thermophilic methanogenic reactors either lower or kept the same with the internal solids recycle. Also, decreasing tendency in specific methane production (SMP) due to the organic loading increase became diminished with the internal solids recycle. Mesophilic methanogenic reactors showed higher TCOD removal efficiency and SMP than thermophilic condition under the same OLR as VSS was always higher under mesophilic condition. In sum, thermophilic acidogenesis-mesophilic methanogenesis system was found to be better than thermophilic-thermophilic system in terms of both organic removal and methane production.

Fermentative Water Purification based on Bio-hydrogen (생물학적 수소 발효를 통한 수처리 시스템)

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.926-931
    • /
    • 2011
  • Among various techniques for hydrogen production from organic wastewater, a dark fermentation is considered to be the most feasible process due to the rapid hydrogen production rate. However, the main drawback of it is the low hydrogen production yield due to intermediate products such as organic acids. To improve the hydrogen production yield, a co-culture system of dark and photo fermentation bacteria was applied to this research. The maximum specific growth rate of R. sphaeroides was determined to be $2.93h^{-1}$ when acetic acid was used as a carbon source. It was quite high compared to that of using a mixture of volatile fatty acids (VFAs). Acetic acid was the most attractive to the cell growth of R. sphaeroides, however, not less efficient in the hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag-phase. There were distinguishable inflection points in the accumulation of hydrogen production graph that resulted from the dynamic production of VFAs or consumption of it by the interaction between the dark and photo fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was $15.9mL-H_2/L/h$, which was achievable in the sustainable hydrogen production.

혐기성 박테리아균인 Zymomonas mobilis을 이용한 알코올 발효와 투과증발법을 이용한 알코올의 분리 농축에 관한 연구

  • Jo, Byeong-Ju;Choe, Cheol-Ho;Lee, Yeong-Mu;Lee, Ui-Sang
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.256-259
    • /
    • 2000
  • Ethanol fermentration of glucose by a strain of Zymomonas mobilis KCTC 1535 was studied in membrane recycle bioreactor, which was coupled with closs flow hollow fiber membrane. The maximum values of product yields and productivity are 0.4685g total ethanol/ g glucose, 14.05g total ethanol/ L/h, respectively The pervaporation performance of the PDMS menbrane has been investigated for the separation of binary mixtures of EtOH/water at $50^{\circ}C{\sim}70^{\circ}C$. The optimum conditions of feed concentration, temperature, feed solution flow rates is determined to be 8%, $70^{\circ}C$, 492ml/min, respectively. An ethanol permselectivity of 7.5 and flux of $0.04kg/m^2/hr$ were obtained with these membrane

  • PDF

Effect of Different Liquid Manure Anaerobic Digestates on the Growth and Yield of Rice and the Optimum Application Concentration (혐기소화발효액비의 벼 생육 및 수량에 미치는 영향과 적정 시용량)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Ryoo, Jong-Won;Hwang, Sun-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.97-104
    • /
    • 2021
  • This research examined the effects of different liquid manure based anaerobic digestate on the growth and yield of rice compared to chemical fertilizer. The liquid manure was produced by aerobic fermentation from swine with cow or apple pomace anaerobic digestate and treated at different concentrations. The number of grains per panicle increased in both the liquid manure-treated and chemical fertilizer treated rice. The yield index did not vary significantly between the liquid manure and chemical fertilizer. An increased concentration of liquid manure did not correlate with increases in unhulled rice. However, pH and exchangeable K in the soil increased with an increase in liquid manure. In summary, we suggest a properly applied 100% liquid manure fertilizer can replace chemical fertilizer to reduce our excessive use of inorganic fertilizer.

Continuous Mesophilic-Dry Anaerobic Digestion of Organic Solid Waste (유기성고형폐기물의 연속 중온 건식혐기성소화)

  • Oh, Sae-Eun;Lee, Mo-Kwon;Kim, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.341-345
    • /
    • 2009
  • Continuous dry anaerobic digestion of organic solid wastes (30% TS, Total Solids) comprised of food waste and paper was performed under mesophilic condition. During the operation, hydraulic retention time (HRT) was decreased as follows: 150 d, 100 d, 60 d, and 40 d, which corresponded to the solid loading rate of 2.0, 3.0, 5.0, and 7.5 kg TS/$m^3$/d, respectively. Volumetric biogas production rate ($m^3$/$m^3$/d) increased as HRT decreased, and the highest biogas production rate of 3.49${\pm}$0.31 $m^3$/$m^3$/d was achieved at 40 d of HRT. At this HRT, high volatile solids (VS) reduction of 76% was maintained, and methane production yield of 0.25 $m^3$/kg $TS_{added}$ was achieved, indicating 67.4% conversion of organic solid waste to bioenergy. The highest biogas production yield of 0.52 $m^3$/kg $TS_{added}$ was achieved at 100 d of HRT, but it did not change much with respect to HRT. For the ease feed pumping, some amount of digester sludge was recycled and mixed with fresh feed to decrease the solid content. Recirculation volume of 5Q was found to be the optimal in this experimental condition. Specific methanogenic activity (SMA) of microorganisms at mesophilic-dry condition was 2.66, 1.94, and 1.20 mL $CH_4$/g VS/d using acetate, butyrate, and propionate as a substrate, respectively.

Production of Fermented Feed from Food Wastes by Using Inoculation (종균 첨가에 의한 음식물 찌꺼기의 발효 사료화)

  • Suh, Eun-Hee;Song, Eun-Seung;Han, Uok;Lee, Sung-Taek;Yang, Jae-Kyung;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • The fermentative conversion of food wastes into feed was investigated by seeding of mixed inoculum YM (Youngjin Environmental co.), and thermotolerant yeast Kl. marxianus. For 6 days' fermentaion, the fermentation method of 2 days' aerobic followed by 4 days' anaerobic was better for the production of organic acids and increasing total microbial population than 6 days' continuous aerobic or anaerobic fermentation. By seeding YM, the total microbial count increased about 100 times of the control group. In addition, Kl. marxianus seeding together with YM increased total viable cell count, but did not increase yeast count significantly.

  • PDF