• Title/Summary/Keyword: 혈중 산소 농도

Search Result 63, Processing Time 0.024 seconds

산소 공급에 따른 언어 인지 능력, 혈중 산소 농도, 심박동율의 변화

  • 황정화;정순철;손진훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.300-300
    • /
    • 2004
  • 본 연구에서는 언어과제 수행 시 일반 공기 중의 산소 농도 (21%) 환경에 비해 외부에서 고 농도 (30%)의 산소 공급이 혈중 산소 포화도(SPO$_2$), 심박동율(Heart Rate), 정답률(Accuracy), 반응속도(Reaction Time)에 어떠한 영향을 미치는지를 검증하고자 한다. 30%와 21%의 산소를 8L/min의 양으로 일정하게 공급할 수 있는 산소 공급 장치를 이용하였고, 10명의 대학생(오른손잡이, 평균나이 23.4세)을 대상으로 실험을 수행하였다. 난이도가 비슷한 두 가지 언어과제를 28문제씩 피험자에게 풀게하여 정답률과 반응속도를 계산하였다.(중략)

  • PDF

Changes of $SPO_2$, heart rate and GSR at resting state due to oxygen administration (안정상태에서 외부의 산소공급에 따른 혈중산소포화도, 심박동율, 피부전도도의 변화)

  • 정순철;이현정;민병찬;김승철
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.11a
    • /
    • pp.71-73
    • /
    • 2003
  • 본 연구에서는 안정 상태에서 일반 공기 중에 산소 농도(21%) 환경에 비해 외부에서 고 농도(35%)의 산소 공급이 혈중 산소 포화도(SPO2), 심박동율(Heart rate), 피부전도도(Galvanic skin response)에 어떠한 영향을 미치는지를 검증하고자 한다. 35%의 고농도 산소를 2L/min의 양으로 일정하게 공급할 수 있는 산소 공급 장치를 이용하였고, 뇌 질병이 없는 5명의 대학생들이 피험자로 참여하였다. 21%의 비해 35% 산소 농도에서 모든 실험 참여자의 3분 동안의 평균 심박동율은 감소하였고 평균 혈중 산소 포화도는 증가하였다. 그러나 피부전도도는 차이가 없었다.

  • PDF

Influence of 30% Oxygen on Heart Rate and $SPO_2$ during Cycle Exercise in Healthy Subjects (30%의 고농도 산소가 정상 성인의 사이클 운동 시 심박동률과 혈중 산소 포화도에 미치는 영향)

  • You Ji-Hye;Yi Jeong-Han;Sohn Jin-Hun;Chung Soon-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The purpose of this study is to analyze the effects of the inhalation of 30% oxygen on heart rate and oxygen saturation ($SPO_2$) during cycle isokinetic exercise, in comparison with the inhalation of 21% oxygen. This study used oxygen supply equipment that can supply each of 21% and 30% oxygen constantly at a rate of 8 liter/min. Ten healthy male college students ($25.2{\pm}2.2$ years) participated in the experiment twice, one for 21% oxygen and the other for 30% oxygen. Each experiment was composed of three sections (a total of 18 minutes), which were composure (2 minutes), cycle isokinetic exercise at a speed of $20{\pm}1km/h$ (10 minutes) and recovery (6 minutes). 21% or 30% oxygen was supplied only during the sections of isokinetic exercise and restoration. Heart rate during isokinetic exercise and recovery was lower with the inhalation of 30% oxygen than with that of 20% oxygen but no difference was observed in $SPO_2$. $SPO_2$ was not different possibly because the same work load was applied to the group of 21% oxygen and that of 30% oxygen. Heart rate was reduced with the inhalation of 30% oxygen possibly because a larger quantity of oxygen was supplied at the same work load.

  • PDF

Effects of $40\%$ Oxygen on 2-back Task: Changes of Cognitive Performance and Physiological Signals ($40\%$ 농도의 산소 공급이 2-back 과제 수행에 미치는 영향: 인지 능력 및 생리 신호의 변화)

  • Chung Soon-Cheol;Park Ha-Ra;Lee Bongsoo;Tack Gye-Rae;Yi Jeong-Han;Eom Jin-Sup;Sohn Jin-Hun
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.3
    • /
    • pp.189-197
    • /
    • 2005
  • In this study, changes in performance of 2-back task, blood oxygen saturation and heart rate due to $40\%$ concentration oxygen supply were observed. Five male $(25.8\pm1.3)$ and five female $(23.0\pm1.0)$ college students were nked to perform 2-bark task during two types of oxygen (concentration $21\%,\;40\%$) administration. The experimental sequence consisted of Rest1(1 min.), 0-back Task (1 min.), 2-bark Task (2 min.), and Rest2 (4 min.) and the physiological signals such as blood oxygen saturation and heart rate were measured throughout the stages. The experimental result showed that the performance increased significantly at $40\%'s$ concentration of oxygen rather than $21\%'s$, which shows oxygen supply has positive influence on cognitive performance. When $40\%$ concentration oxygen is supplied, the oxygen saturation in the blood increased and heart rate was decreased significantly comparing to $21\%$. It is Suggested that $40\%$ oxygen can stimulate brain activation bY increasing actual blood oxygen concentration in the process of cognitive performance, and hyperoxia makes heart rate decrease.

  • PDF

Effect of Highly Concentrated Oxygen Administration on Addition Task Performance and Physiological Signals (고농도 산소가 덧셈과제 수행능력과 생리신호에 미치는 영향)

  • Chung, Soon-Cheol;Lim, Dae-Woon
    • Science of Emotion and Sensibility
    • /
    • v.11 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • This study investigated the effect of 40% oxygen administration on the addition task performance in three levels of difficulties and physiological signals. Ten male and female college students were selected as the subjects for this study. The experiment consisted of two runs: one was a addition task, with normal air (21% oxygen) administered and the other was with hyperoxic air (40% oxygen) administered. The experimental sequence in each run consisted of Rest1 (3 min), Task1 (1 min, one digit addition task), Task2 (1 min, two digit addition task), Task3 (1 min, three digit addition task), and Rest2 (4 min). Blood oxygen saturation and heart rate were measured throughout the five phases. The accuracy rates of the addition task were enhanced with 40% oxygen administration compared to 21% oxygen. Difference in the accuracy rates grew higher with the rise of difficulty. When 40% concentration oxygen is supplied, blood oxygen saturation increased and heart rate was decreased comparing to 21%. This study showed that the supply of high concentration oxygen increases blood oxygen saturation, which in turns accelerates brain activation resulting from cognitive process and enhances arithmetic abilities. Particularly when difficulty is high, demand for oxygen increases and, as a result, the effect of high concentration oxygen becomes more significant.

  • PDF

Changes of Blood Gases, Plasma Catecholamine Concentrations and Hemodynamic Data in Anesthetized Dogs during Graded Hypoxia Induced by Nitrous Oxide (아산화질소에 의한 점진적 저산소가스 흡입이 혈중 가스치와 Catecholamine치 및 혈역학에 미치는 영향)

  • Kim, Sae-Yeon;Song, Sun-Ok;Bae, Jung-In;Cheun, Jae-Kyu;Bae, Jae-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.1
    • /
    • pp.97-113
    • /
    • 1998
  • The sympathoadrenal system plays an important role in homeostasis in widely varing external environments. Conflicting findings, however, have been reported on its response to hypoxia. We investigated the effect of hypoxia on the sympathoadrenal system in dogs under halothane anesthesia by measuring levels of circulating catecholamines in response to graded hypoxia. Ten healthy mongreal dogs were mechanically ventilated with different hypoxic gas mixtures. Graded hypoxia and reoxygenation were induced by progressively decreasing the oxygen fraction in the inhalation gas mixture from 21%(control) to 15%, 10% and 5% at every 5 minutes, and then reoxygenated with 60% oxygen. Mean arterial pressure, central venous pressure and mean pulmonary arterial pressure were measured directly using pressure transducers. Cardiac output was measured by the thermodilutional method. For analysis of blood gas, saturation and content, arterial and mixed venous blood were sampled via the femoral and pulmonary artery at the end of each hypoxic condition. The concentration of plasma catecholamines was determined by radioenzymatic assay. According to the exposure of graded hypoxia, not only did arterial and mixed venous oxygen tension decreased markedly at 10% and 5% oxygen, but also arterial and mixed venous oxygen saturation decreased significantly. An increased trend of the oxygen extraction ratio was seen during graded hypoxia. Cardiac output, mean arterial pressure and systemic vascular resistance were unchanged or increased slightly. Pulmonary arterial pressure(PAP) and pulmonary vascular resistance(PVR) were increased by 55%, 76% in 10% oxygen and by 82%, 95% in 5% oxygen, respectively(p<0.01). The concentrations of plasma norepinephrine, epinephrine and dopamine increased by 75%, 29%, 24% in 15% oxygen and by 382%, 350%, 49% in 5% oxygen. These data suggest that the sympathetic nervous system was activated to maintain homeostasis by modifying blood flow distribution to improve oxygen delivery to tissues by hypoxia, but hemodynamic changes might be blunted by high concentration of nitrous oxide except PAP and PVR. It would be suggested that hemodynamic changes might not be sensitive index during hypoxia induced by high concentration of nitrous oxide exposure.

  • PDF

A Study on the Oxygen Saturation Level Changes in the Blood Exposed to the Static Magnetic Field (자속에 노출된 인체의 혈중 산소 포화농도의 변화에 관한 연구)

  • Jung, Yong-Chul;Lee, Dong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.87-90
    • /
    • 2007
  • The effects of static magnetic field on the human biological system are becoming increasingly more important with the adaption of static magnet in the medical community. It is the goal of this paper to review the effects of static magnetic fields on oxygen saturation level in blood. The results of this paper show that the oxygen saturation level increased in the blood in index finger when the static magnetic dipole was fitted on index finger.

Differences of Blood Oxygen Saturation between 20s and 60s due to Amount of Highly Concentrated Oxygen Administration (고농도 산소 공급량에 따른 20대와 60대의 혈중 산소 포화도의 차이)

  • Choi, Mi-Hyun;Kim, Ji-Hye;Lee, Su-Jeong;Yang, Jae-Woong;Yi, Jeong-Han;Jun, Jae-Hoon;Kim, Hyun-Jun;Lee, Tae-Soo;Chung, Soon-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The purpose of this study was to examine differences between 20s and 60s in blood oxygen saturation due to 93% oxygen administration of the three levels(1L/min, 3L/min, 5L/min). Ten 20s male($25.0{\pm}1.8$ years), ten 20s female($23.7{\pm}1.9$ years), ten 60s male($68.0{\pm}2.6$ years), and ten 60s female($65.5{\pm}3.1$ years) were selected as the subjects for this study. The oxygen supply equipment(OXUS Co.) provided oxygen by supply rate(i.e., 1L/min, 3L/min, and 5L/min) at a constant rate of 93% oxygen. The experiment consisted of three phases, i.e., Prehyperoxia(5min), Hyperoxia(10min), and Post-hyperoxia(5min). Blood oxygen saturation were measured throughoutthe three phases. By increasing the amount of highly concentrated oxygen administration, blood oxygen saturation was increased. Blood oxygen saturation of 20s was higher than 60s. Blood oxygen saturation was greater during Hyperoxia than during Pre- and Post-hyperoxia. However, rising rate of blood oxygen saturation of 60s by oxygen administration was higher than 20s.

  • PDF

Changes in Verbal Cognitive Performance, Blood Oxygen Saturation and Heart Rate due to 30% Oxygen Administration (30% 산소 공급에 의한 언어 인지 능력, 혈중 산소 농도, 심박동율의 변화)

  • Chung Soon Cheol;Sohn Jin Hun;Tack Gye Rae;Yi Jeong Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, changes in verbal cognitive performance, blood oxygen saturation and heart rate due to 30% concentration oxygen supply were observed. Five male (24.6±0.9) and five female (22.2±1.9) college students were asked to perform 28 verbal cognitive tasks of the same difficulty during two types of oxygen (concentration 21%, 30%) administration. The experimental sequence consisted of Rest1 (1 min.), Control (1 min.), Task (4 min.), and Rest2 (4 min.) and the physiological signals such as blood oxygen saturation and heart rate were measured throughout the stages. The experimental result showed that the performance increased significantly at 30%'s concentration of oxygen rather than 21%'s, which shows oxygen supply has positive influence on verbal cognitive performance. When 30% concentration oxygen is supplied, the oxygen saturation in the blood significantly increased comparing to 21%. The heart rate showed no significant difference. Significant correlations were found between changes in oxygen saturation and cognitive performance. It is suggested that 30% oxygen can stimulate brain activation by increasing actual blood oxygen concentration in the process of cognitive performance.