• Title/Summary/Keyword: 현장 재료 강도

Search Result 419, Processing Time 0.027 seconds

Engineering Characteristics of Crushed Rock for Foundation and Backfill Materials of a Conduit (관거의 기초 및 뒷채움재로 활용하기 위한 석분의 공학적 특성)

  • Moon, Hongduk;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.67-73
    • /
    • 2006
  • In this study, basic physical tests and mechanical tests of crushed rock were performed in order to investigate the field application of crushed rock as substitute materials of sand that is commonly being used as foundation and backfill materials of sewer conduit. Particle-size distribution curve of crushed rock is similar to sand and also it is well-graded soil than common sand. Maximum dry unit weight in proctor compaction test for crushed rock is higher than the values of common sand. So we can estimate that the crushed rock has advantages in workability than sand for the backfill compaction after construction of sewer conduit. When we investigate the results of direct shear test and triaxial compression test on the crushed rock, it has a similar value of shear strength parameters to sand at the same stress state and as time goes by, it tends to increase the unconfined compression strength. But, because the strength reaches at the constant value after 6~7 days, we expect that it can absorb the lateral strain of flexible conduit well. All the above experimental results just proves that crushed rock can substitute for sand as backfill materials and foundation of sewer conduit.

  • PDF

Investigation of Adhesion property between Glass Fiber Reinforced Plastic and Polyurethane adhesives on Peel strength under Gyogenic tempernture (극저온에서 유리섬유강화플라스틱 표면의 유리섬유와 폴리우레탄 접착제간의 접착특성이 전체 박리강도에 미치는 영향에 대한 연구)

  • Shon, Min-Young;Lee, Jae-Kwang;Hong, Jeong-Lak
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2009
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane adhesive is using for LNG carrier with cryogenic temperature condition. Even if similar polyurethane adhesive is used for different substrate, it shows different adhesion properties. Specially, variation of adhesion properties depending on the resin system or fiber is very important factor for selection of adhesive on industrial application. In present study, we got different peel strength according to the different test temperature when different polyurethane adhesive was used for same fiber reinforced composite. The main cause was investigated using by SEM and it was proven that the different adhesion property between glass fiber on composite surface and polyurethane adhesives at cryogenic temperature.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

Experimental Improvement of the Dropping Test for Evaluating the Appropriate Level of Water Content Ratio in Rammed Earth Method (흙다짐 건축재료의 적정함수비 현장확인을 위한 낙하시험 방법의 실험적 개선)

  • Lee, Jong-Kook
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • Although the interest for earth architecture has been expanded and settled as a part of modern architecture, precisely calculating the ratio of water content in practice is still difficult and the calculation is based on empirical analysis yet. This causes many problems in durability and maintenance of earthen architecture. Therefore, this study investigated to find the easiest way to correctly calculate the appropriate level of water content ratio (AWCR), which can be used in practice. Until now, the workers have checked the AWCR based on their own experience with popular but vague manuals. On this awareness, we studied the several testing methods and found the dropping test which uses the pattern of shape after the sample is dropped. In this point, we studied and developed the definite testing method in terms of process, and shape discrimination. Also we suggest the test recording sheet by using the cobalt chloride($CoCl_2$) whose color is instantly changed when contacts with the moisture. It is believed that this result can help improving the quality and durability of the earthen architecture using the rammed earth method and the efficiency in practice.

Assessment of Rock Mass Strength Using Three-Dimensional Numerical Analysis with the Distinct Element Method (개별요소법 기반의 삼차원 수치해석을 통한 절리성 암반의 강도특성 평가)

  • Junbong Bae;Jeong-Gi Um;Hoyoung Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.573-586
    • /
    • 2023
  • Joints or weak planes can induce anisotropy in the strength and deformability of fractured rock masses. Comprehending this anisotropic behavior is crucial to engineering geology. This study used plaster as a friction material to mold specimens with a single joint. The strength and deformability of the specimens were measured in true triaxial compression tests. The measured results were compared with three-dimensional numerical analysis based on the distinct element method, conducted under identical conditions, to assess the reliability of the modeled values. The numerical results highlight that the principal stress conditions in the field, in conjunction with joint orientations, are crucial factors to the study of the strength and deformability of fractured rock masses. The strength of a transversely isotropic rock mass derived numerically considering changes in the dip angle of the joint notably increases as the intermediate principal stress increases. This increment varies depending on the dip of the joint. Moreover, the interplay between the dip direction of the joint and the two horizontal principal stress directions dictates the strength of the transversely isotropic rock mass. For a rock mass with two joint sets, the set with the steeper dip angle governs the overall strength. If a rock bridge effect occurs owing to the limited continuity of one of the joint sets, the orientation of the set with longer continuity dominates the strength of the entire rock mass. Although conventional three-dimensional failure criteria for fractured rock masses have limited applicability in the field, supplementing them with numerical analysis proves highly beneficial.

A Study on the Field Application of Superior Recycled Pavement of the Waste Asphalt (고품질 재활용 아스팔트 혼합물의 현장적용성에 대한 연구)

  • Kim, Jiwon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • Asphalt pavement waste can be recycled by crushing and heating methods with additional virgin materials and additives. In this study, a new additive using Sasol wax and Polyolefin elastomer was used for improving the quality of the Superior recycled asphalt pavement(SRP). Additive was added into the recycled mixture by 1.5% and 3% of binder content in order to have PG 70-22 and PG 76-22. Both mixtures were tested by Marshall apparatus, indirect strength testing methods, toughness testing methods, moisture susceptibility testing methods and wheel tracking testing methods. Test results met the standards of KS F 2349 and GR F 4005. Through research, it was found that these special recycled mixtures could be applied for the surface and base course of heavy traffic roads or equivalents. About 13,000 tons of the recycled mixture has been applied on Seoul Olympic road to provide new road to Hangang park for Seoul citizens.

Experimental Study on Reduced Amount of Rebound in Wet Process Shotcrete Works by Upon Accelerator Contents (급결제 함유량에 따른 습식 Shotcrete 리바운드 감소량에 대한 실험적 연구)

  • Jeon, Jun Tai;Park, Hong Tae;Lee, Yang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.615-622
    • /
    • 2012
  • The aim of shotcrete is to increase the bearing capacity and to protect the excavated surface from erosion by preventing falling of rock mass. Shotcreting method is divided into two types as dry process and wet process. Since 1997, wet process method has been used more frequently than dry process method in field works. The failure to bond, so called rebound, occurs in many case during shotcrete works. The excess amount of rebound has a significant effect on the total construction cost. For example, material and craft-man cost increases, the shooting time delays due to deceleration of work execution stage, work efficiency of craft-man decreases and additional cost to remove the muck generates. In this study, therefore, the experimental analysis of rebound amount and strength was conducted by analyzing the actual construction data for wet process type of shotcreting method upon accelerator contents. Also, the effective and rational method was suggested, which can be actually implemented in the Korea construction sites.

Understanding on Characteristics of the Sand Bars' Movement in the Meandering Reaches by a Movable-Bed Experiment (이동상 수리모형실험을 통한 만곡부 모래사주의 거동특성 분석)

  • Lee, Sam-Hee;Hwang, Seung-Yong;Park, Jae-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1679-1683
    • /
    • 2007
  • 최근 우리나라에서 하천 및 유역 환경의 급격한 변화로 인하여 하천 형태가 많이 변하고 있는 추세이다. 특히 사행하는 모래 하천에서 만곡부 사주의 형태 변화가 커지고 있다. 이 연구에서는 이와 같은 모래 하천의 만곡부에서 사주의 변화 특성을 평가하고 그 원인을 파악하기 위하여 이동상 수리모형 실험을 실시하였다. 실험에서 하천 및 유역의 여러 상황 변화를 감안하여 유량, 유사 공급량, 공급 시간, 하천 변형 등 다양한 조건을 상정하였다. 연구 대상하천은 낙동강 본류이며, 중점 수리모형 실험대상 구간은 우리나라의 전통민속마을인 안동 하회마을을 태극형으로 감싸면서 사행하는 만곡부이다. 이동상 실험규모는 수평축적 1/110, 수직축적 1/50로 왜곡도가 2.2로써 비교적 대규모이다. 모형 하상재료는 입경 0.29 mm의 석탄분(anthracite)을 채택하였으며, 현장에서 하상재료조사와 상사해석을 통해 결정하였다. 실험 결과, 유량과 유사 공급량 변화에 따른 사주 변화가 밀접한 관계가 있는 것으로 나타났다. 특히 유사 공급이 이루어지지 않을 때 국지적 퇴적양상을 보였다. 이는 사주 내 식생활착으로 이어지는 계기가 될 수 있음을 확인할 수 있었다. 그리고 설계홍수량 규모에서 구하도와 과거 사주가 재현되었는데, 이는 지역주민을 통해 입증되었다. 또한 천연기념물인 만송정 주변의 모래둔덕의 형성과정이 입증되었다.

  • PDF

Estimation of field application for the PHC pile backfill recycling In-site soil (현장 발생토를 재활용한 PHC파일 채움재의 현장 적용성 평가)

  • Choi, Hee-Bok;Noh, Chang-Suck;Han, Byung-Kwon;Lee, Hong-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.63-66
    • /
    • 2011
  • The aim of this study is to estimate the field applicability of PBFM to replace in-site soil with pile backfill used to replace the existing cement paste. As results, the flowability, segregation and bleeding, and bond strength of PBFM was a good performance than that of the existing cement paste. But the skin friction of pile by Pile Driving Analyzer (PDA) and compressive strength was slightly decreased than that of the existing cement paste. However, as pile backfill materials, and in terms of economics and environment, the applicability of PBFM is considered very effective.

  • PDF

Behavior of Oyster Shell-Sand Compaction Pile in Field Load Tests (현장재하시험에 의한 굴패각-모래 다짐말뚝의 거동특성)

  • Yoon, Yeo-Won;Yoon, Gil-Lim;Kim, Keun-Soo;Kim, Jae-Kwun;Kim, Seung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1210-1217
    • /
    • 2006
  • 실내시험 및 모형시험에 의하면 굴패각은 모래의 대체재료로써 활용가능한 것으로 나타났다. 본 연구에서는 굴패각 모래 혼합시료에 대한 대형전단시험 결과와 굴패각 모래 다짐말뚝에 대한 현장재하시험 결과를 제시하였다. 굴패각 모래 혼합시료는 혼합율 30%까지는 혼합율이 증가할수록 전단강도가 증가하였으며 그 이상의 혼합율에서는 수렴하는 경향을 나타내었다. 순수모래다짐말뚝과 굴패각-모래 다짐말뚝에 대한 재하시험 결과로부터 두 말뚝간의 허용지지력에는 거의 차이가 없음을 알 수 있었다.

  • PDF