• Title/Summary/Keyword: 현장 단위중량

Search Result 95, Processing Time 0.023 seconds

An Experimental Study on the Change of Bulking Coefficient of Soils Mixed with Rock Blades (암버력이 혼재된 토사의 토량환산계수 변화에 관한 실험적 연구)

  • Park, Yeong Mog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.193-198
    • /
    • 2012
  • Field and laboratory tests were performed to investigate the swelling(L value) and shrinkage modulus (C value) of soil and rock mixtures using 2 sites. According to test results, when disturbed soil and rock were mixed with same amount (5:5), the maximum density was achieved and showed 19% and 18% increased at each site comparing with the unit weight of rock only. Since measured L values of mixtures were overestimated about 4 to 11% compare to estimated values based on the conventional method. While C values were underestimated about 13~20% compare to conventional values due to the development of compacting equipments and effective construction management. When rock and soil were mixed in the ratio of 5 to 5, the unit weight of the mixture was higher than that of other mixtures and rock or soil only.

Effect of Mixing Time by Mix Truck on the Physical Properties of Lightweight Air-mixed Soil (믹스트럭 내 교반시간이 경량기포혼합토의 물성에 미치는 영향)

  • Kim, Taehyo;Kim, Nayoung;Im, Jongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 2015
  • As the physical and mechanical properties of lightweight air-mixed soil change in the procedure of transportation of mix truck, it is necessary to assure whether the properties during construction satisfy those in design. In this study, variations of properties of mixed soil after transportation by mix truck are proved by field test. Lightweight air-mixed soil used field test the unit weight of $9.0{\pm}1.0kN/m^3$, the flow value of $190{\pm}20mm$ was produced. To analyze variations of properties of mixed soil the unit weight and flow value of the sample before and after transport was measured unconfined compressive strength tests were performed. Mixing time was 19~175 minutes diversified. As the test results, it is known that the density, the flow value and the unconfined compressive strength of lightweight air-mixed soil change by transportation, but these values satisfy the specifications of material of air-mixed soil. After transportation the average value of the unit weight and flow value change in the flow of the $(+)0.10kN/m^3$, 4.8 mm respectively, the average change in the unit weight and the flow value due to the mixing time was constant. And unconfined compressive strength of 28-day specimen increases from 20 to $150kN/m^2$. But, these values do not have some clear relationship with the transportation time within 175 minutes which is longest test time. Consequently, Within 175 minutes the changes of properties by transportation are too small to show some problems in the construction field.

Water Content and Dry Density Measurement of Soil Using Flat TDR System (Flat TDR 시스템을 이용한 흙의 함수비와 건조단위중량 측정)

  • Kim, Wanmin;Kim, Daehyeon;Seo, Hyeok
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.5-19
    • /
    • 2017
  • This study has been conducted to improve the conventional compaction management method by measuring the water content and dry unit weight of soil using the Time Domain Reflectometry (TDR) method. In order to verify the measured value of the developed flat TDR system, laboratory tests were conducted on six soils. Also, based on laboratory experiments, field tests were conducted to evaluate the applicability of the developed flat TDR system. Also, a comparison experiment was conducted with the Purdue TDR system. In addition, FE analysis was done to confirm the influence range of the Flat probe. As a result, it was confirmed that the influence range was about 10 cm. As a result of laboratory experiment, the water content ratio showed an error of about 0.4% on the average, and in the case of dry unit weight, it showed an error of about 1.6%. For the field test, the water content ratio and unit weight showed an error of 0.8% and 2.5%, respectively. Through the experimental results, it was confirmed that the measured value of the Flat TDR system is more accurate than that of the conventional TDR system.

Durability evaluation depending on the insert size of conical Picks by the field test (삽입재 크기에 따른 코니컬 커터의 현장 내구성 평가 연구)

  • Choi, Soon-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • In this study, the durability of conical pick cutter was compared and analyzed by pre- and post-test visual inspection, measurement of weight loss and wear volume through field test on two types of conical pick cutters applied to rotary drum cutter. In the visual inspection, it was found that only 9 inserts were lost in the slim type conical pick cutter. This result show that the thickness of the head cover surrounding a insert was important to maintain the insert during excavation. The weight loss and wear volume of the heavy type conical pick cutter were less than half that of the slim type. From these results, it can be confirmed that heavy type is more useful than slim type in hard rock. It should be noted that, when determining the wear loss of the conical pick cutter, the mutual comparison of the weight measurement and the wear volume measurement results may be different due to the unit weight of the material and the spalling caused by excavation.

A Study on Constructibility of heavyweight ballast concrete with recycled iron slag (폐분철을 이용한 고중량 밸러스트 콘크리트 제조 및 시공성에 관한 연구)

  • Park, Dae-Oh;Park, Young-Shin;Park, Jae-Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.785-788
    • /
    • 2008
  • This study is focused on applying heavyweight concrete to ballast used to have stability of a ship. Generally, heavyweight concrete is made from a high density aggregate like magnetite or limonite. However, these materials are hard to obtain them from relevant companies and so expensive. Therefore, this study plans to product heavyweight ballast concrete which is easy to obtain by recycled iron slag. Heavyweight ballast concrete isn't required to meet some compressive strength in use, but it is required to have high flowable and 2.7t/m3 of bulk density to fill the ballast tank densely. The designed field mix proportion of concrete based on the results of pre-experiment shows it can control the temperature crack and has superior chloride corrosion resistance after conducting chloride corrosion experiment. Also, it is prefer that before airtightness voltile corrosion inhibiter(VCI) is added in airtight space of shipyard.

  • PDF

Application of Artificial Neural Network to the Estimation of Mass Conversion Rate in Weathered Granite Soils (화강암 풍화토의 토량 변화율 추정을 위한 인공신경망 적용)

  • 김영수;정성관;임안식;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.73-83
    • /
    • 2001
  • 본 연구에서는 전국 4개 지구의 화강암 풍화토를 연구대상으로 현장 및 실내시험을 수행하고 토량 변화율을 노상과 노체에 대하여 결정하였다. 그리고, 본 연구에서는 인공 신경망 중 오류 역전파 학습 알고리즘을 도입하여 토량 변화율 C 값을 추정하고 신경망의 적용성에 대한 검증을 수행하였다. 화강암 풍화토에 대한 실내 및 현장시험 결과에서 얻어진 토량 변화율 C 값은 노상과 노체 구분 없이 최소 0.7에서 최대 1.2정도의 넓은 범위로 나타났다. 토지공사에서 제안하는 C값의 산정식과 본 연구 결과를 비교한 결과, 토지공사의 산정식에 의한 결과가 과대 평가될 가능성이 큰 것으로 나타났다. 비중, 자연 함수비, 자연상태의 습윤단위중량, #200 통과율 그리고 균등계수의 입력변수를 갖는 $I_{5-1}$$H_{30-30}$$O_1$의 신경망에서 다른 신경망 구조들보다 잦은 지역 최소점에 수렴하는 결과를 보였다. 본 연구에서 사용한 모든 신경망 구조에서 시험결과와 신경망 결과의 상관계수는 0.9이상으로 나타나 높은 상관성을 나타내었다. 특히, 인공 신경망에 의한 예측결과는 다양한 영향인자들 중에서 비중, 자연 함수비, 자연상태의 습윤단위중량 그리고 #200 통과율의 4개 변수만으로도 C값을 예측할 수 있었으며, 상관계수는 0.96으로 나타났다.다.

  • PDF

Analysis of Rainfall Infiltration Velocity for Unsaturated Soils by an Unsaturated Soil Column Test : Comparison of Weathered Gneiss Soil and Weathered Granite Soil (불포화토 칼럼시험을 통한 불포화토 내 강우침투속도 분석: 편마암 풍화토와 화강암 풍화토의 비교)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su;Park, Hyuek-Jin
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.71-82
    • /
    • 2011
  • The unsaturated soil column tests were carried out for weathered gneiss soil and weathered granite soil in order to obtain the relationship between rainfall intensity and infiltration velocity of rainfall on the basis of different unit weight conditions of soil. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at constant time interval. For the column test, three different unit weights were used as in-situ condition, loose condition and dense condition, and rainfall intensities were selected as 20 mm/h and 50 mm/h. In 20 mm/h rainfall intensity condition, average rainfall infiltration velocities for both gneiss and weathered granite soils were obtained as $2.854{\times}10^{-3}$ cm/s ~ $1.297{\times}10^{-3}$ cm/s for different unit weight values and $2.734{\times}10^{-3}$ cm/s ~ $1.707{\times}10^{-3}$ cm/s, respectively. In 50 mm/h rainfall intensity condition, rainfall infiltration velocities were obtained as $4.509{\times}10^{-3}$ cm/s ~ $2.016{\times}10^{-3}$ cm/s and $4.265{\times}10^{-3}$ cm/s ~ $3.764{\times}10^{-3}$ cm/s respectively. The test results showed that the higher rainfall intensity and the lower unit weight of soil, the faster average infiltration velocity. In addition, the weathered granite soils had faster rainfall infiltration velocities than those of the weathered gneiss soils except for the looser unit weight conditions. This is due to the fact that the weathered granite soil had more homogeneous particle size, smaller unit weight condition and larger porosity.

Numerical Analysis of Effects of the Physical Properties of Soil and Contaminant Materials on In-situ Soil Remediation Using Vertical Drain (토양 및 오염물질의 물성치가 연직배수재에 의한 현장오염정화에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The properties of contaminated soil, contaminants and elapsed time are important considering factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one ($C/C_0$) with time and spatial changes in contaminated area which are embedded with vertical drains. The contaminant concentration ratio ($C/C_0$) is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil, temperature in ground, unit weight and viscosity of contaminants by using FLUSH1 model modified from FLUSH. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation in vertical drain system is the effective diameter of contaminated soil. It also shows that the next important factors are the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants and density of soil, in order. However, the others except the effective diameter of contaminated soil are insignificant to the soil remediation.

  • PDF

Correlation Between Physical and Compaction Characteristics of Various Soils (다양한 지반의 물리적 특성과 다짐특성 상관성)

  • Park, Choonsik;Kim, Jonghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • This study, to provide quantitative data related to compaction characteristics, identifies the compaction characteristics of various types of soil samplers, in relation to their particle-size distribution and plasticity degree, and the compaction characteristics of artificially created granular materials, in relation to their A & D compaction. The results of the experiments show as follows. $r_{dmax}$ of clay is less than those of both sand and gravel approximately by 10%. O.M.C of clay has turned out to be greater than sand and gravel approximately by 20% and 30%, respectively. Changes in the compaction characteristics can be observed clearly around 30~60% of sand and 30~50% of passing No.200 sieve. It has also been shown that the compaction characteristics related to LL and PL are similar to each other in changes, and that the compaction characteristics become less clear with higher percent of fine grained soil. The compaction characteristics of the artificially created granular materials and field materials have appeared almost similar to each other. $r_{dmax}$ is less approximately by 30% and O.M.C greater approximately by 20% in A compaction than in D compaction. As $r_{dmax}$ and O.M.C become greater, its rate increases.

Analysis of Sand Water Ratio and Drying Unit Weight Using Flat TDR System (Flat TDR 시스템을 이용한 모래의 함수비와 건조단위중량 분석)

  • Lee, Junesung;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.333-342
    • /
    • 2021
  • In this study was conducted to measure the water content and dry unit weight of the ground using TDR (Time Domain Reflectometry) in order to supplement the problems of the conventional compaction management method. The Flat TDR system is a device that does not cause ground disturbance, and in order to verify the measured values, the dry density and water content were measured for samples of the ground subject at 7 sites other than Jumunjin Standard Temple. The water content section was divided into 6 sections of 3, 6, 9, 12, 15, and 18%, and the experimental results were confirmed according to the unified classification method. As a result of the indoor experiment, the water content showed an error of about 0.7% for the SP sample and about 1.3% for the SM sample. In addition, the dry unit weight confirmed an error of about 7% for the SP sample and about 5% for the SM sample. It was confirmed that stable values were derived in sandy or silty sandy ground except for clay or gravel. Through the experimental results, it was confirmed that the measured values of the flat TDR system derive similar values to the existing traditional compaction management method, and it was determined that the flat TDR equipment was suitable for construction sites that require quick constructability and economic feasibility.