• Title/Summary/Keyword: 현장변위

Search Result 629, Processing Time 0.028 seconds

Application of x-MR control chart on monitoring displacement for prediction of abnormal ground behaviour in tunnelling (터널 시공 중 이상 거동 예측을 위한 계측 변위의 x-MR 관리도 활용)

  • Yun, Hyun-Seok;Song, Gyu-Jin;Shin, Young-Wan;Kim, Chang-Yong;Choo, Seok-Yeon;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.445-458
    • /
    • 2014
  • The displacement data monitored during tunnel construction play a crucial role in predicting the behaviour of ground around and ahead of excavation face. However, the management criteria for monitoring data are not well established especially for the reliable analysis on varying aspect of displacement data along with chainage. In this study, we evaluated the applicability of x-MR control chart method, which is kind of applied statistical management method, for the analysis of displacement monitoring data in terms of prediction of possible collapse or induced cracks. As a result, a possible abnormal behaviour could be predicted beforehand at 5 ~ 13 m ahead or on at least one day before it occurred by using x-MR control chart method. In addition, it is noted that the moving range for the x-MR control chart should be set to 5~10 for this purpose.

Tunnel pillar reinforcement effect using PC stranded wire and groutings (PC강연선 및 그라우팅을 이용한 터널 필라부 보강효과)

  • Yeon-Deok Kim;Soo-Jin Lee;Pyung-Woo Lee;Hong-Su Yun;Sang-Hwan Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.43-63
    • /
    • 2023
  • With the concentration of the population in the city center and the saturation of the structures on the ground, the development of the underground structures becomes important and the construction of an adjoining tunnel that can reduce the overall problems is respected. In addition, it is necessary to apply the reinforcement construction method for the pillar part of the adjacent tunnel that can secure stability, economy and workability of the site. In this study, the tunnel pillar reinforcement method using prestress and grouting was reviewed. There are various reinforcement methods that can compensate for the problems of the side tunnel, but as the tunnel pillar construction method using prestress and grouting is judged to be excellent in field applicability, stability and economic feasibility, theoretical and numerical analysis of the actual behavior mechanism are conducted. Numerical analysis is divided into PC stranded wire + steel pipe reinforcement grouting + prestress (Case 1), pillar part tie bolt reinforcement (Case 2), pillar part non-reinforcement (Case 3) under the same ground conditions, and the maximum value of the celling displacement, internal displacement, and member force, the stability was confirmed. Through numerical analysis, it was confirmed that Case 1 which reinforced the PC stranded wire, was the best construction method and if it is verified and supplemented through field experiments later, it will be possible to derive superior results in terms of displacement control and member force than the currently applied reinforcement method was judged.

Evaluation of Hydraulic Conductivity of Slurry-wall-type Vertical Cutoff Wall with Consideration of Filter Cake (필터케이크(filter cake)를 고려한 슬러리월 연직차수벽의 현장투수계수 평가)

  • Nguyen, The Bao;Lee, Chul-Ho;Choi, Hang-Seok;Kim, Sang-Gyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.121-131
    • /
    • 2008
  • In constructing a slurry trench cutoff wall, bentonite-water slurry is used to secure the stability of sidewalls during excavation before the wall is completed by backfilling. Unexpectedly, a thin but relatively impermeable layer called filter cake can be formed on the excavation surface, which significantly influences the result of slug test analysis in the cutoff wall if not considered. This study is to examine the effect of filter cake on evaluating hydraulic conductivity of the vertical cutoff wall through slug test analysis with the aid of the verified numerical program Slug_3D. The no-flux boundary conditions were adopted in Slug_3D to simulate the filter cake on the interface between the wall and the natural soil. A new set of type curves were built for applying the type curve method. New modification factors were obtained for using the modified line-fitting method. With consideration of filter cake, the type curve method and the modified line-fitting method were adopted to reanalyze the case study taken from EMCON (1995). The previous results achieved by Choi and Daniel (2006) without consideration of filter cake were compared with the present results obtained in this paper. The comparison emphasizes the necessity of considering filter cake when analyzing slug test results in vertical cutoff walls.

Numerical Analysis of Laterally Displacing Abutment in High Landfill Slope (고성토사면에 시공된 교대의 측방유동에 대한 수치해석적 연구)

  • Park, Min-Cheol;Jang, Seo-Yong;Shin, Baek-Chul;Han, Heui-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.27-39
    • /
    • 2012
  • This research is to propose the reinforcing method and design code for the lateral behaviors of the abutment displacement induced from the rainfall infiltration on high landfill slope. First, to make the proper numerical analysis, in-situ soil (weathered granite soil) was taken, and the variance of strength parameters according to water content variance was examined by undrained direct shear test, furthermore, other soil parameters were calculated from the standard penetration test such as elastic modulus and Poisson's ratio etc,. Those parameters were used to calculate the lateral behavior of abutment by finite element method and the member force of pile in high landfill slope according to rainfall infiltration . From the results, the shoe displacement on abutment was calculated as 8.98cm, which is 3 times bigger than the allowable displacement, 3cm. To reinforce it, several reinforcing methods were selected and analyzed such as reinforced retaining wall, soil surcharge, pile reinforcing (5m enlargement, 3-line arrangement, 5m enlargement and 3-line arrangement). In case of 5m enlarged and 3-line arrangement piles, the lateral behavior of shoe showed lower value(2.26 cm) than allowable displacement.

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Improved Effects of Steel Pipe Reinforced Multi-Step Grouting Method Using the Nonlinear 3-D Tunnel Analysis (3차원 터널해석에 의한 강관보강형 다단그라우팅의 보강효과)

  • Lee, Bong-Ryeol;Kim, Hyeong-Tak;Kim, Hak-Mun
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.5-20
    • /
    • 1996
  • In this study it was analyzed by 2-D FEM and 3-D FEM to evaluate the ground reinforceing effect of steel pipe reinforced multi -step grouting (SPRG) technique and the behavior of ground in the vicinity using the nonlinear FEM program for the ground condition of alluvium located on the top of tunnel applied by SPRG technique. It was found that the nonlinear 3-D analysis performed better than 2-D analysis in evaluating the usefulness of the SPRG technique, and it was also found that the safety was relatively secured by the stiffness of steel pipe to distribute the concentrated stress in the tunnel faceing. It was reported that the change of settlement on the top of tunnel becomes about 40% of the total expected settlement before tunnel faceing reaches tunnel gauging point, and 60% of the total expected settlement while tunnel facing passes tunnel gauging point and takes a distance about tunnel diameter. With the aid of the SPRG technique the control range of displacement and stress of the ground in the vicinity could be reached up to tunnel top, namely depth ratio from 0.38 to 0.83 or 2D(D : tunnel diameter) before the tunnel facing, and about 20% of settlement control in this particular case was possible.

  • PDF

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

Application of Total Station for Structure and Terrain Displacement Monitoring (구조물 및 지형변위 모니터링을 위한 토털스테이션의 활용)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.582-587
    • /
    • 2020
  • Recently, disasters caused by extreme weather and the damage caused by them are increasing worldwide. The interest in disasters, such as earthquakes, typhoons, and ground subsidence, is increasing in Korea. Korea has enacted a special law based on disaster management, and has built monitoring systems for individual facility units by building precision sensors and related systems to measure the displacement status of long bridges and high-rise composite buildings. On the other hand, the application of a real-time monitoring system is insufficient for slopes, open-pit mines, small and medium structures due to weather, measurement methods, cost, and constant monitoring difficulties. In this study, the displacement monitoring method using the total station was studied and the applicability was suggested through the experiment. Through the research, the concept and operation flow of a monitoring system that can measure the displacement of the terrain or the structure using the total station was presented. The monitoring system allows the user to select the location and operation method of the equipment so that the equipment can be installed according to the site situation, and set the number of observations, the period, and the observation range of the object. Using the experiment on the monitoring system, the station was monitored with precision within 5mm, and it was suggested that the displacement of the object can be monitored using the total station. Further research will be needed to assess the applicability of monitoring to real slopes and structures.

A Study on the Effective Restraint Method of Lateral Displacement of an Inclined Earth Retaining Structure in Soft Clay (연약점토지반에 설치된 IER 지주식 흙막이의 효과적인 수평변위억제 방법에 관한 연구)

  • Kim, Jayoung;Im, Jong-Chul;Seo, Minsu;Kim, Changyoung;Park, Eun Kyeong;Park, Tae Keon
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.15-24
    • /
    • 2017
  • A self-supported temporary excavation method called Inclined Earth Retaining structure (IER) has been developed by improving an existing excavation method. The stability of the IER was proved with both model tests and field tests. Especially, the results of the model tests proved that the lateral displacement of a model retaining wall was significantly reduced in clay. In this study, the applicability of the IER installed in the soft clay ground is estimated by analyzing survey data collected in the construction field. The results of FE analysis show that the lateral displacement of the IER decreased by 70.9% of that of a single row, self-supported retaining wall using the same number of H-piles. Thus, using the IER method in the soft clay ground will increase the stability of the excavated ground with the effect restraining its lateral displacement. Furthermore, using Deep Cement Mixing (DCM) to the upper half embedded depth of front support is recommended as a subsidiary method of reducing the lateral displacement of IER in the soft clay ground based on FE analysis results.

The Consolidation Behavior on Soft Clay by Numerical Analysis (수치해석에 의한 연약지반의 압밀거동)

  • Kang, Yea Mook;Lee, Dal Won;Lim, Seong Hun;Yoon, Je Shik
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.235-246
    • /
    • 1998
  • This study was performed to find the effect of parameters of numerical analysis model. To find the parameters of numerical analysis model, triaxial test and consolidation test were conducted and the results were compared and analyzed with various methods. Preloaded ground was analyzed with Hyperbolic and Modified Cam-Clay models. Hyperbolic model analysis result was good agreement with measured lateral displacement, and Modified Cam-Clay model agreed more than Hyperbolic model with settlement. When the parameters of models were changed, change of settlement on center of embankment and of maximum lateral displacement on distance 5m from end of embankment were compared. On Hyperbolic model the parameter K has large influence on settlement and lateral displacement. On Modified Cam-Clay model the parameters ${\Gamma}$ and M have large influence on settlement and lateral displacement, respectively.

  • PDF