• Title/Summary/Keyword: 현장공기분사공정법

Search Result 2, Processing Time 0.02 seconds

TPH, $CO_2$ and VOCs Variation Characteristics of Diesel Contaminated Aquifer by In-situ Air Sparging (공기분사공정에 의한 유류오염대수층의 TPH, $CO_2$, VOCs 변화 특성)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.18-27
    • /
    • 2006
  • Air Sparging (IAS, AS) is a ground-water remediation technique, in which organic contaminants are volatilized into air as they rise from saturated to vadose soil zone. This study was conducted to investigate the variation characteristics of TPH, VOCs and $CO_2$ for air sparging of diesel contaminated saturated soil. Initial TPH concentration was 10,000 mg/kg for saturated soil phase and 1,001 mg/L for soil aquifer phase. After 36 days of air sparging, the equilibrium temperature of 2-Dimension experiment system was $24.9{\pm}1.5^{\circ}C$. The saturated soil TPH concentration (in the C10 port close to air diffuser) was reduced to 66.0% of the initial value. The mass amount of $CO_2$ was 3,800 mg and 3,200 mg in air space (C70 port) and in unsaturated soil zone (C50 port), respectively. The VOCs production kinetic parameter was 0.164/day in the air space (C70 port) and 0.182/day in the unsaturated soils (C50 port).

현장공기분사공정법(IAS)을 이용한 공기 영향반경과 흐름 양상 연구

  • 이준호;박갑성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.213-217
    • /
    • 2004
  • Laboratory scale study for an area of influence and flowing aspect of groundwater saturated zone was conducted for three sediment grains. On the AMG(Average Modal diameter Grains) 0.34, 1.38, 3.89mm diameter samples, the affected area of the aquifer were 15.2, 37.0, 30.0%/m2 each. Air flow for AMG 0.34mm diameter grain size provides indication of pattern of channelized air flow in saturated zone and expansion state in above saturated zone. For AMG of 1.38, 3.89mm diameter grains, air flow are pervasive air flow, forming a symmetrical cone of influence around the injection point. And also AMG 1.38, 3.89mm diameter samples show onset of collapse and approach to steady state in above saturated zone, respectively. In this study, optimal sites for in situ air sparging, may be grain diameters between about AMC 1.5~2.5mm diameter.

  • PDF