• Title/Summary/Keyword: 현무암질 마그마

Search Result 49, Processing Time 0.027 seconds

경주시 양남 제4기 역질 해안단구 퇴적층 풍화단면내 앨로패인(allophane) 교결층의 기원

  • 정기영;배진한;정창식
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.115-115
    • /
    • 2001
  • 경주시 양남면의 4기 단층으로 추정되는 수렴단층에 의해 절단되는 해안단구 퇴적층 풍화단면에서 저결정질 광물인 앨로패인 교결층을 기재하였다. 이들은 자갈퇴적층 내에 협재하는 수조의 모래층에 한정되어 형성되어 있으며, 3-17 cm 두께로 연장성이 매우 좋다. 편광현미경 관찰에 의하면 모래층에는 사장석편들이 다량 함유되어 있으며 앨로패인은 광학적 등방성의 치밀한 점토집합체들로서 사장석 입자를 선택적으로 교대하거나 자갈과 모래입자들을 피복하고 있다. 앨로패인은 광학적 이방성인 상하위층의 고령토질 점토피복물과 명확히 구분된다. 앨로패인의 전자현미분석에 의하면, Al/Si 원자비가 1.3-1.7 범위이고 평균값은 1.5이다. X선회절분석 결과 3.49$\AA$과 2.26$\AA$에서 두 개의 넓은 회절대가 관찰된다. 주사 및 투과전자현미경관찰에 의하면 앨로패인을 특정한 입자형태 없이 치밀한 겔상태를 이루고 있다. 열분석에 의하면 96$^{\circ}C$에서 큰 흡열피크와 992$^{\circ}C$에서 발열피크가 관찰되며, 총 45% 정도의 중량감소를 보인다. 사장석의 평균조성은 An$_{87}$이며, 사장석내 유리포유물의 전자현미분석결과는 화산암 화학분류도에서 현무암 영역에 도시된다. 이 지역의 기반암은 현무암질 라필리응회암이나 사장석편을 제외하고 벤토나이트화되어 있다. 따라서 해빈환경에서 사장석이 벤토나이트에서 분리되어 퇴적한 것으로 보인다. 앨로패인 교결층은 해수면 강하로 단구퇴적층이 지표로 노출된 후, Al의 함량이 높고 비교적 풍화에 약한 사장석이 선택적으로 풍화되어 생성되었다. 앨로패인으로 피복된 모래층 내의 자갈은 풍화반응이 지체되어 상하위층의 자갈과 비교하여 풍화도에 있어서 현저한 차이를 보인다.. 파이프 중심에서 외곽부로 갈수록 전기석의 함량은 줄어들고 있고 장석들이 알바이트ㆍ칼스베드 쌍정을 보이며, 흑운모가 각섬석보다는 우세하게 나타나고 있다. 전기석은 주상 결정, 자형 내지 반자형의 입자로 다색성을 보이며, 결정 중심에서 가장자리로 갈수록 파란색과 황갈색의 광학적 누대구조를 관찰할 수 있다. 일광광산에서 산출되는 전기석에 대한 현미경 관찰은 열수기원임을 지시하고 있다. 야외조사와 현미경 관찰의 예비조사에 의하면 일광광산의 전기석이 형성된 환경은 다른2가지 화학적인 저장소의 혼합 효과의 결과로 생성되어진 것으로 예상된다. 일광의 화강암류를 만든 마그마는 전기석을 형성할 만큼의 Fe-Mg성분이 충분하지 않았을 것이다. 화강암 내에 흑운모와 각섬석의 결정작용에 의해 마그마의 Fe-Mg성분이 고갈되어지고 이로 인해 그 함량이 감소하며 상대적으로 마그마 내에 남은 붕소(B$_2$O$_3$)는 열수로 용리되고 흑운모, 각섬석과 평형을 유지하며 열수에 남아있게 된다. 잔류용융체에 남은 붕소의 함량은 전기석을 만들기에 충분함에도 불구하고, Fe-Mg 함량이 부족하여 마그마 기원의 전기석 결정을 만들 수가 없다가 광맥이 형성된 시기에 또 다른 열수가 공급되면서 이전의 평형이 깨지고 기존의 흑운모와 같은 염기성 광물이 붕소(B)를 함유한 새로운 열수와 반응하여 전기석을 형성한 것으로 예상한다. 앞으로 전암과 광물에 대해 지화학적 연구를 통해 화강암류와 전기석과의 지화학적 연관성, 주성분 원소와 열수의 특성과의 상관관계, 전기석의 기원(마그마 기원인지 열수기원인지)이 보다 정확하게 파악될 것이다. 마그마 진화에 따른 전기석의 성분변화와 기원을 이용하여 일광광산의 동광화대를 형성한 마그마 계에서 열수계로 이어지는 지질학적 과정을 이해할 수 있을 것이며, 암석 성인론적 지시자로서

  • PDF

Petrology of enclave in the Mt. Wonhyo granite, Yangsan city (양산시 원효산 화강암에 산출되는 포획암에 대한 암석학적 연구)

  • 진미정;김종선;이준동;김인수;백인성
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.142-168
    • /
    • 2000
  • The granites distributed in the Kyongsang basin contain the rocks which are different from the host rocks, and they are known as magic microgranular enclaves. The genesis of the magic micro-granular enclaves can be divided into four types: (1) rock fragments from country rocks; (2) cumulation of the early crystals in host magma or disruption of early chilled borders; (3) magma mingling; and (4) restite. These enclaves can be easily found in the granites around Mt. Wonhyo, Yangsan city. They are ellipsoidal in shape, and have phenocrysts might be originated from the host rocks and sharp contacts with the granites. Under the microscope, textures such as oscillation zoning, horn-blende-mantled quartz, rapakivi texture, and acicular apatite are observed, and these indicate that the enclaves were originated from magma and then produced by chilling. The evidences showing that the enclaves were formed by magma mingling are: (1) petrographical characteristics; (2) similarity of the compositions between the rim of plagioclase in the enclave and plagioclase in the granite; (3) linear trends of the major elements; (4) total REE content of the enclaves; and (5) Textural and compositional variations from rim to core in zoned enclaves. The magic end member of the enclave is regarded as the aphyric basaltic andesite in Mt. Sinbul-Youngchui area. The granites around Mt. Wonhyo experienced the magma mingling process which was produced by the injection of mafic magma at about 70 Ma, during the crystal differentiation, and then continued the crystallization. The equigranular granites and the micrographic granites in the study area are considered as the results after the magma mingling process.

  • PDF

Magmatic Evolutions based on Compositional Variations with Time in the Maljandeung Tuff, Ulleung Island, Korea (울릉도 말잔등응회암에서 시간에 따른 조성변화에 근거한 마그마 진화)

  • Hwang, Sang Koo;Lee, So-Jin;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.111-128
    • /
    • 2019
  • Ulleung Island is the top of an intraplate alkalic volcano rising 3200 m from sea floor in the East Sea (or Sea of Japan). The emergent 984.6 m consist of eruptive products of basaltic, trachytic and phonolitic magmas, which are divided into Dodong Basaltic Rocks, and Ulleung, Seonginbong and Nari groups. The Maljandeung Tuff in the Nari Group consists of thick pyroclastic sequences which are subdivided into 4 members (N-5, U-4, 3, 2), generating from explosive eruptions during past 18.8~5.6 ka B.P. From chemical data, the Member N-5, phonolitic in composition, is considerably enriched in incompatible elements and REE patterns with significant negative Eu anomalies. The members 4, 3 and 2 are phonolitic to tephriphonolitic in composition, and their REE patterns do not have significant Eu anomalies. In variation trend diagrams, many elements show abrupt compositional gaps between members, and gradual upward-mafic variations from phonolite to tephriphonolite within each member. It suggests a downward-mafic zonation that were evolved into phonolitic zone in the lower part to tephriphonolitic zone in upper part of magma chamber. It is supposed that the chemical stratification generated from multiple mechanisms of thermal gravidiffusion, crystal fractionation, and gradual melting and sequential emplacement. The stratified magmas were explosively erupted to generate a small caldera during short period (11 ka B.P.). Especially both members (U-3, 2) were accumulated by gradually erupting from the upper phonoltic zone to the lower tephriphonoltic zone of the stratified chamber in 8.4 ka B.P. and 5.6 ka B.P. time, respectively.

Geochemistry and Metamorphism of the Amphibolite in the Odesan Gneiss Complex (오대산편마암복합체내에 산출되는 앰피볼라이트의 지화학적 특성과 변성작용)

  • 권용완
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.111-131
    • /
    • 1998
  • The migmatitic gneiss in the Odesan Gneiss Complex has small amount of quartzite, amphibolite and marble and the Kuryong Group which contact with migmatitic gneiss unconformitly, also contains some amphibolite. Preview studies of this area had regarded that the amphibolites contact with marble had been produced by metasomatism from the pelitic and calcareous sediments mixtures, but the amphibolite is reinterpreted as igneous origin. $SiO_2$ content of the amphibolite is 45.9~52.7 wt%, which corresponds to basaltic composition. MgO content has narrow range (4.6~6.87 wt%) and major and trace element are plotted against MgO,$TiO_2, P_2O_5$, Hf, Zr are reduced and Cr and Ni are increased their content with increasing MgO. This phenomenon indicates that the basaltic magma as the protolith of the amphibolite had frationated with the crystallization of the pyroxene and/or olivine. REE pattern has smoothly decrease from LREE to HREE. Eu/Eu(0.83~1.19) show the flat Eu anomaly, which indicate small fractional crystallization of plagioclase. HREE is enriched in the garnet-bearing amphibolites. Several discrimination diagram for the basaltic magma show that the amphibolite of the study area is originated tholeiitic basaltic magma indicating continental rift environment. Due to determine the metamorphic condition garnet-hornblende geothermometry and hornblende-plagioclase geobarometry are used. Peak metamorphic temperature range of the amphibolite $788~870^{\circ}C$ and is deduced toward the northeastern part. The calculated temperature from the amphibolite has slightly higher than the temperature of the metapelites but the trend of metamorphic grade which decrease from western to eastern part progradly is similar to each other. The metamorphic pressure calculated by garnet- hornblede-plagioclase geobarometry is 4~5kb. But ilmenite-plagioclase pair enclosed in garnet show 8 kb at $700^{\circ}C$ by garnet-ilmenite-rutile-plagioclase geobarometery. The zonal profile of garnet in sample 84 shows the bell-shape profile, which grossular content decreases whereas pyrope content increases progressively. This means that the amphibolite has undergone the clockwise P-T-t path which is shown in the migmatitic gneiss of the Odesan Gneiss Complex.

  • PDF

Petrology and Amphibolites(Meta-Dolerite sill) in the Mungyong Areal Korea (문경지역에 분포하는 각섬암(변성조립현무암)에 대한 암석학적연구)

  • Ahn, Kun-Sang;Shin, In-Hyun;Kim, Hee-Nam
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.500-514
    • /
    • 1997
  • With respect to the amphibolites in the Mungyong area of the central part of the Ogcheon Fold Belt, detail field occurrence, texture and geochemical properties within each sills and petrogenetic environment are presented. We confirmed that the amphibolites in the Sangnaeri Formation (Ogcheon Supergroup) and limestone(Cambro-Ordovician Chosun Supergroup) sequences are metamorphosed dolerite sills which are roughly concordant to bedding of country rocks. Geologic distribution of the rocks is distinctly improved compared with those of previous investigations. There are four main sills so far observed in the study area. One is emplaced in limestone(Ls Sill, about 3 m thick) and the others are emplaced in Sangnaeri Formation, which are named First Sill(about 40 m thick), Second Sill(about 100 m thick) and Third Sill(about 40 m thick) from lower to upper horizons of the meta-pelitic sequences. The thick sills are intruded by minor sills and the Third Sill is a composite sill consisting of two main and two minor sills. Each sill has fine grained chilled marginal zones and grain size increases inwards from both contacts. The Second Sill has various vein and white patch in central part and the rock compositions vary systematically from margin to central part. $SiO_2,\;Na_2O,\;K_2O\;and\;P_2O_5$ increase, whereas $TiO_2,\;FeO,\;Al_2O_3\;and\;CaO$ decrease toward the contort. We investigate the major and trace element variations of ten selected rock compositions as intruding initial magma take occurrence and chemical properties into consideration. The compositional variations of them can not be explained by fractionation crystallization of single magma. Geologic distribution, geochemical properties and previous data suggest that amphibolite precursors(basaltic magma) of the study area were intrusive as sill-like in an intracontinental rift environment.

  • PDF

Tectonic Setting and Arc Volcanisms of the Gyeongsang Arc in the Southeastern Korean Peninsula (한반도 남동부 경상호의 조구조 배경과 호화산작용)

  • Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.367-383
    • /
    • 2012
  • The Gyeongsang Arc is the most notable of the Korea Arc that is composed of several volcanic arcs trending to NE-SW direction in the Korean peninsula. The Hayang Group has many volcanogenic interbeds of lava flows by alkaline or calc-alkaline basaltic volcanisms during early Cretaceous. Late Cretaceous calc-alkaline andesitic and rhyolitic volcanisms reconstructed the Gyeongsang Arc that consist of thick volcanic strata on the Hayang Group in The Gyeongsang Basin. The volcanisms characterize first eruptions of basaltic and andesitic lavas with small pyroclastics, and continue later eruptions of dacitic and rhyolitic ash-fall and voluminous ash-flow with some calderas and then domes and dykes. During the Early Cretaceous (about 120 Ma), oblique subduction of the Izanagi plate to NNW from N direction results in sinistral strike-slip faults to open a pull-apart basin in back-arc area of the Gyeongsang Arc, in which erupted lava flows from generation of magma by a decrease in lithostatic pressure. Therefore the Gyeongsang Basin is interpreted into back-arc basin reconstructed by a continental rifting. Arc volcanism began in about 100 Ma with exaggeration of the back-arc basin in the Gyeongsang, and then changed violently to construct volcanic arcs. During the Late Cretaceous (about 90 Ma), orthogonal subduction of the Izanagi plate to NW from NNW direction ceased development of the basin to prolong violent volcanisms.

Petrological study on the Miocene Dangsari volcanic rocks, eastern part of Ulsan city, southeastern Korea (울산 동부 마이오세 당사리화산암류에 대한 암석학적 연구)

  • 윤성효;고정선;박기호;이영애
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.169-186
    • /
    • 2000
  • The Miocene volcanic rocks in the Dangsari area, eastern part of Ulsan city, are mainly composed of andesite lava flows and pyroclastic rocks. The andesite lavas are identified as two-pyroxone andesite, comprising phenocrysts of augite ($Wo_{43.2}$ $En_{41.0}$ $Fs_{15.8}$ ) and hyperthene ($Wo_{2.7}$ $65.8_{En}$ $_{Fs}$ 31.5). The andesitic pyroclastic rocks are largely composed of pyroclastic breccias with alternating tuff-breccia and lapilli tuff, which showing planar layering, and minor amount of andesitic tuff with thin deposits of interlayered tuffaceous shale. According to the petrochemical data, andesitic rocks belong to medium-K calc-alkaline andesite. The position of bulk composition on the AFM diagram and the presence of normative quartz and hypersthene indicate that the volcanic rocks are calc-alkaline. The trace element composition and REE patterns of andesite, which are characterized by a high LILE/HFSE ratio and enrichment in LREE, suggest that they are typical of continental margin arc calc-alkalic volcanic rocks produced in the subduction environment. On the discrimination diagram, the Dangsari volcanic rocks fall into the fields of subduction related continental margin arc volcanic province. The primary magic melts may be derived from about 15% partial melting of mantle wedge in the upper mantle under destructive plate margin. And the melt evolved to calc-alkaline andesite magma by fractional crystallization and the magma was a little contaminated with crustal materials.

  • PDF

Petrography of the Miocene Volcanic Rocks of the Eoil Basin, Southeastern Part of Korean Peninsula (한반도 남동부 어일분지의 마이오세 화산암의 암석기재적 연구)

  • 이정현;윤성효;고정선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.64-80
    • /
    • 2004
  • The Miocene volcanic rocks in the Eoil Basin, which is one of the pull-apart basins in the southeastern Korean Peninsula, are bimodal in composition: felsic (67.2-70.5wt.% SiO$_2$) and mafic(49.3-55.2wt.% SiO$_2$). The bimodal volcanic activities in the basin appear to be closely associated with the basin development. The volcanic rocks are intercalated with thick Files of sedimentary sequence. They show evidence of magma mixing. which has produced mafic and felsic volcanic rocks. We are able to identify the petrographic characteristics (disequilibrium phenocryst assemblages) of the volcanic rocks that were mixed. In basaltic lava, phenocrysts of olivine and orthopyroxene coexist with corroded quartz phenocryst. Dacitic to rhyolitic welded ash-flow tuff contains phenocrysts of clinopyroxene and orthopyroxene. It suggests that phenocryst disequilibrium have been affected and mixed by magmas, which have different compositions.

Geochemical Study of Dyke Swarms, SE Korea (한반도 남동부일원의 암맥군에 관한 지화학적 연구)

  • Kim, Jin-Seop;Kim, Jong-Sun;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.182-199
    • /
    • 2002
  • We attempted to show the evolution of the magma and the geochemical characteristics of dikes and dike swarms by using the petrographic and geochemical data from 287 dikes, SE Korea. The dikes can be divided into mafic, intermediate, and felsic dikes in the field. And each of them is subdivided into three groups, two groups, and two groups, respectively. The group (I) among the mafic dikes most pervasively occurs and are distributed in both sides of the Yeonil Tectonic Line (YIL), which petrographic and geochemical characteristics are the same. These facts thus, strongly support the results of the previous studies which showed that they were intruded contemporaneously and that YTL was a main tectonic line which restricted the crustal clockwise rotation during the Early Miocene. The geochemical characteristics are discriminated according to the seven groups divided petrographically. The mafic, intermediate and felsic dikes belong to basalt and basaltic andesite, andesite and facile, and rhyolite, respectively, and the magmas mostly belong to calc-alkaline series. The geochemical data indicate that there were the fractional crystallizations of olivine, clinopyroxene, and plagioclase in the mafic dikes. And the content of characteristic elements and tectonic discrimination diagrams show that the dikes were formed from the magma related to the subduction of plate and that the tectonic setting was related to orogenic volcanic arc.

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.