• 제목/요약/키워드: 현가장치 설계

Search Result 146, Processing Time 0.027 seconds

A Robust $H^{\infty}$ Controller for Active Suspensions Based on a Full-Car Model (차량의 능동형 현가장치를 위한 강인한 $H^{\infty}$ 제어기 설계)

  • Park, Jong-Hyeon;Kim, Young-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.146-154
    • /
    • 2000
  • An $H\infty$ controller is designed for active suspensions of vehicles using 7-degree-of-freedom full-car model. Its performance robustness as well as stability robustness to system parameter variations and unmodelled dynamics are assured through the $\mu$-framework. The performance of the $H\infty$ controller is compared with that of a LQC controller in compute simulations. From the simulations it is found that the active suspension with the $H\infty$ controller reduces the acceleration and motion of the sprung mass in the heaving rolling and pitching directions when the car is driven on a normal road or through an asymmetric bump. The suspension stroke and the road holding capability are also improved with a relatively small level of power consumption. Overall the $H\infty$ controller shows a more robust performance than that of the LQG design.

  • PDF

LQG Controller Design for Active Suspensions using Evolution Strategy and Neural Network (진화전략과 신경회로망을 이용한 능동 현가장치 LQG 제어기 설계)

  • Cheon, Jong-Min;Kim, Jong-Moon;Park, Min-Kook;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.266-268
    • /
    • 2006
  • In this paper, we design a Linear Quadratic Gaussian(LQG) controller for active suspensions. We can improve the inherent suspension problem, trade-off between the ride quality and the suspension travel by selecting appropriate weights in the LQ-objective function. Using an optimization-algorithm, Evolution Strategy(ES), we find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle's state variables. The frequencies and proper control gains are used for the neural network data. During a vehicle running, the trained on-line neural network is activated and provides the proper gains for non-trained frequencies.

  • PDF

Output feedback, decentralized controller design for an active suspension system using 7 DOF full car model (7 자유도 차량 모델과 출력 되먹임을 이용한 자동차 능동 현가장치 설계에 관한 연구)

  • 노태수;정길도;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.871-875
    • /
    • 1996
  • The Output feedback linear quadratic regulator control is applied to the design of active suspension system using 7 DOF full car model. The performance index reflects the vehicle vertical movement, pitch and roll motion, and minimization of suspension stroke displacements in the rattle space. The elements of gain matrix are approximately decoupled so that each suspension requires only local information to generate the control force. The simulation results indicates that the output feedback LQ controller is more effective than purely passive or full state feedback active LQ controllers in following the road profile at the low frequency range and suppressing the road disturbance at the high frequency ranges.

  • PDF

A Design of Vehicle Active Suspension Controller with Variable Control Objects Determined by Driving Conditions (주행 상황에 따라 다양한 제어목적을 가지는 차량 능동 현가장치 제어기 설계)

  • Cheon, Jong-Min;Kim, Seog-Joo;Park, Jong-Moon;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.346-348
    • /
    • 2005
  • In this paper, we designed a vehicle active suspension controller. Vehicle suspensions have various design objects with tradeoff among them and these objects cannot be satisfied under all driving conditions. We need to design a controller adapted to variable driving conditions changing the objects of vehicle suspensions. To design such a controller, we must be able to detect the current driving conditions and focus on the road frequencies giving us useful and important information about driving conditions. Detecting the road frequencies, we use the Fourier Transform. A unexpected driving change like a speed bump was also included to items the new designed controller must consider.

  • PDF

Design of an Active Suspension Controller with Simple Vehicle Models (단순 차량 모델을 이용한 능동 현가장치 제어기 설계)

  • Yim, Seongjin;Jeong, Jinhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

Design and Manufacture of Road Simulator for Suspension Durability Test (서스펜션 내구시험용 Road Simulator의 설계 및 제작)

  • 최경락;황성호;전승배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.155-160
    • /
    • 2001
  • The road simulator system can simulate the longitudinal, lateral, and vertical movement changed by road conditions and vehicle dynamic characteristics while driving. This system provides the durability evaluation of vehicle suspensions. The system consists of hydraulic actuators, link mechanism, and servo controller. The hydraulic actuators are specially manufactured using low friction seals to endure high speed movement. The link mechanism is designed in order to minimize the dynamic effect during motion and remove the interference between 3axes actuators. The servo controller is composed of sensors, sensor amplifiers - displacement transducers and load cells, and an industrial PC with DSP board which calculates the control algorithm to control hydraulic actuators. The test results are included to evaluate the performance of this simulator comparing vehicle driving test.

  • PDF

A study to determine the Design parameters of high speed freight wagon (고속화차용 현가장치 적정 설계변수 선정에 관한 연구)

  • 김남포;김종호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.484-490
    • /
    • 2000
  • The freight wagon with weld fabricated 1-piece bogies, which was developed to increase operating speed, reveals its difficulties in maintenance. The weld-fabricated bogies were composed of two-stage coil spring and dry friction damping mechanism. The inborn wear parts and rather complicated structure mattes bogie maintenance difficult. In order to relieve this difficulties, the application of maintenance free rubber suspension is proposed by bogie maunfacturer, Taeyang Precision Limited. This study was conducted to determine design parameters of proposed rubber suspension by means of vehicle dynamic simulation and parametric study. The target critical speed of bogie was set over 150km/h for the preparation of further speed-up of freight wagon.

  • PDF

The Design of Neuro Controlled Active Suspension (신경회로망을 이용한 능동형 현가장치 제어기 설계)

  • 오정철;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.414-419
    • /
    • 1994
  • In recent years, there has been an increasing intest in control of active automotive suspension systems with a goal of improving the ride comfort and safety. Many approaches for these purposes have used linearized models of the suspension's dynamics, allowing the use of linear control theory. However, the linearized model does not well descriibe the actual system behavior which is inherently nonlinear. The object of this study is to develop a neuro controlled active suspension for the ride quality improvement. After obtaining active control law using optimal control theory, we use the artificial neural network to train the neuro controller to learn the relation of road input and control force. Form the numerical results, we found that back propagation learning does show good pattern matching and vertical acceleration of the driver's seat and sprung mass.

  • PDF

A Study on the Development of the Side Load Coil Spring (횡력발생 코일스프링 설계 및 제조에 관한 연구)

  • Kwon, H. H.;Choi, S. J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.98-105
    • /
    • 1998
  • In the automotive suspension system, especially, Mcpherson strut type, if the resultant of the force through tire and the link reaction force is not coincident with the spring force, the side load against shock-absorber occur. The magnitude of side load is proportional to the difference between resultant force and spring force. To reduce side load, several method can be used, and one is to use the side load coil spring. This study summarize the development results of side load coil spring, i.e., how to design, analysis, manufacture, and test.

  • PDF

LQR Design Considering Control Input Saturation in Cross-Product Term and Its Application to an Automotive Active Suspension Control (교차곱항에 제어입력의 포화를 고려한 LQR 설계 및 자동차 능동 현가장치 제어에의 응용)

  • Seo, Young-Bong;Choi, Jae-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.169-174
    • /
    • 1999
  • In this paper, the CLQR(Constrained LQR) controller, which considers the actuator saturation in a cross-product term of a given performance index for an automotive active suspension control has been proposed. The effects of actuator saturations have been reflected directly in the states by using the linear relation between the control input and states. The method proposed here is more effective and intuitive compared with the conventional schemes. The CLQR has been applied to designing an automotive active suspension control system to verify its effectiveness and practical aspects.

  • PDF