• Title/Summary/Keyword: 현가요소

Search Result 56, Processing Time 0.018 seconds

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.

Economics Assessments of Spent Fuel Management Options in Korea (사용후핵연료관리에 관한 경제성 분석)

  • 전풍일
    • Nuclear industry
    • /
    • v.4 no.6 s.22
    • /
    • pp.19-23
    • /
    • 1984
  • 현재 우리나라에는 3기의 원전이 운전중에 있으며 6기가 건설중에 있다. 즉, 2기의 가압경수로(PWR)의 1기의 가압중수로(HWR)가 운전중에 있으며 건설중인 것은 모두 PWR이다. 현재 추진되고 있는 원전계획을 수행하면, 1990년에는 사용후핵연료가 년간 약200톤씩 방출될 것이며, 2000년에는 500톤 정도가 방출되게 된다. 이와 같은 핵사용후연료는 현재 소내저장하고 있으나 '90년대 중반 부터는 소내저장용량이 한계에 달하게 될 것으로 전망되고 있다. 따라서 본교에서의 이와 같은 소내저장 한계성에 대처할 수 있는 가능한 방안을 검토하고, 이를 경제성 측면에서 분석하고자 하였다. 사용후핵연료의 관리방안에 대한 경제성 분석을 위해서는 장래의 원전계획, 원자로형 및 핵연료주기방식 등에 대한 여러 가지 가정이 필요하게 된다. 원전계획은 정부에서 발표한 $\ulcorner$5차5개년 수정계획$\lrcorner$에 의거하여 원전시설용량은 현재의 2GWe에서 2000년에는 22GWe로, 2025년에는 44GWe로 늘어나는 것으로 보았다. 이와 같은 원전계획을 바탕으로 6가지 핵연료주기에 관한 시나리오를 설정하였다. 즉, 사용후핵연료를 비순환방식으로 운영하는 2가지 경우, 순환방식으로 운영되는 3가지 경우 그리고 FBR에 활용하는 1가지의 경우에 대하여 검토하였다. 사용후핵연료의 관리방식에 따른 장기적인 안목에서의 경제성 분석은 핵연료주기비용 뿐만아니라 원전의 투자비도 함께 분석하는 것이 합리적이며, 따라서 본교에서는 계획기간 동안의 6가지 시나리로에 따른 원전 및 핵연료주기에 관한 총 투자비를 비교하였고, 1982년 가격으로 현가화한 단가도 비교${\cdot}$검토 하였다. 이와 같은 6가지 시나리오에 대한 경제성을 비교해 본 결과, 핵연료주기선택의 경제성평가에 큰 영향을 주는 핵연료주기요소는 재처리비, 재처리시 방출되는 폐기물의 처리${\cdot}$처분비 그리고 사용후핵연료 저장방식으로 판명되었으며 6가지 시나리오에 대한 경제성 비교평가 결과, 다음과 같은 결론을 얻었다. 단기적인 안목에서는 소내저장용량을 확장하는 방안이 가장 바람직하며, 중기적인 관점에서는 소외집중저장설비가 활발히 수행되는 시점에서는 사용후핵연료를 재처리하여 재활용하는 방안도 강구되어야 할 것이다.

  • PDF

Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling (3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석)

  • Kim, Jinwan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The fatigue happening during the road riding of the vehicle and for the moment the aircraft lands on the runway is closely related to the life cycle of the landing gear, the airframe, the vehicle's suspension, etc. The multiple loads acting on the wheel are longitudinal, lateral, vertical, and braking forces. To study the dynamic characteristics and fatigue stiffness of the vehicle, the dynamic fatigue simulator generally has been used to represent the real road vibration in the lab. It can save time and cost. In hardware, the critical factor in the hydraulic fatigue simulator structure is to decouple each axis and to endure several load vibration. In this paper, the inverse kinematic analysis method derives the magnitude of movement of the hydraulic servo actuator by the coupling after rendering the maximum movement displacement in the axial direction at the center of the dummy wheel. The result of the analysis is that the coupling between the axes is weak to reproduce the real road vibrations precisely.

Structural Design of the Outer Tie Rod for an Electrical Vehicle (전기 자동차용 아우터 타이로드의 구조설계)

  • Seo, Bu-Kyo;Kim, Jong-Kyu;Lee, Dong-Jin;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4171-4177
    • /
    • 2013
  • Outer tie rod is lighter than other, but there is the trend item weight and the number is increasing due to vehicle performance improvement. Thus, to improve vehicle fuel efficiency, weight lightening is essential. Therefore, this research performed the finite element analysis to investigate the structural performance of the outer tie rod for an electrical vehicle. This study was performed as the preliminary study for a lightweight design of the outer tie rod. The weight of outer tie rod was optimized by adopting the steel material and applying the trial and error method. The strengths due to durability and buckling should be considered in the structural design of an outer tie rod. Furthermore, the meta model-based optimization was applied to obtain its lightweight design, leading to 9 % weigh reduction.

A Study on Torsional Characteristics of the Car Body Types at Cornering Motion (선회주행 시 차체의 비틀림 특성에 관한 연구)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.739-744
    • /
    • 2017
  • Elastic deformation and fatigue damage can cause the permanent deformation of a kart's frame during turning, affecting the kart's driving performance. A kart's frame does not contain any suspension or differential devices and, therefore, the dynamic behavior caused by torsional deformation when driving along a curve can strongly affect these two kinds of deformations. To analyze the dynamic behavior of a kart along a curved section, the GPS trajectory of the kart is obtained and the torsional stress acting on the kart-frame is measured in real time. The mechanical properties of leisure and racing karts are investigated by analyzing their material properties and conducting a tensile test. The torsional stress concentration and frame distortion are investigated through a stress analysis of the frame on the basis of the obtained results. Leisure and racing karts are tested in each driving condition using driving analysis equipment. The behavior of a kart when being driven along a curved section is investigated through this test. Because load movement occurs owing to centrifugal force when driving along a curve, torsional stress acts on the kart's steel frame. In the case of a leisure kart, the maximum torsional stress derived from the torsional fatigue limit was found to be 230 MPa, and the torsional fatigue limit coefficient was 0.65 when driving at a speed of 40 km/h. Furthermore, the driving elements during the cornering of a kart were measured based on an actual auto-test after installing a driving measurement system, and the driving behavior of the kart was analyzed by measuring its vertical displacement.

Economic Analysis of the Livestock Manure Treatment System Using Life-Cycle Cost Technique (LCC 기법을 통한 가축분뇨처리시설의 경제성 분석)

  • Kim, J.H.;Cho, S.H.;Kwag, J.H.;Choi, D.Y.;Jeong, K.H.;Chung, U.S.;Chung, M.S.;Park, S.K.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.sup
    • /
    • pp.61-68
    • /
    • 2011
  • To assess the total cost with all stages of facilities, the feasibility of Life Cycle Cost (LCC) analysis was examined in this study to estimate the livestock manure treatment system and optimal decision making process. For the economic evaluation, the plant/equipment investment and annual operation cost of four Public Livestock Recycling Facilities, whose treatment capacity is 100 ton piggery manure per day, was compared. The initial cost was in the range of 2,699 million won to 3,202 million won, where T and E methods were highest and lowest, respectively. The annual operation cost was in the level of 378 million to 498 million won, which decreased in the following order : T method > J method > E method > B method. For the LCC analysis, 4.7% of interest rate, 3.13% of inflation rate, and 1.52% of net discount rate was considered by the data received from Bank of Korea and Statics Korea in the period of 2000 to 2009. Also, for the calculation of present value factor, the durable years of civil engineering & construction, machinery and electric instrument was 30 years, 10 years and 15 years, respectively. Based on these consideration, operation cost was in the range of 17,570 won/ton to 20,661 won/ton, and E method (17,570 won/ton) was economical and B method (20,661 won/ton) was non-economical. Though initial cost of T method was higher than that of B method, LCC analysis of T method was lower than that of T method due to the lower operation cost. Therefore, LCC analysis, which considers both initial cost and operation cost, is more reasonable evaluation method than either initial cost or annual operation cost. For the change of LCC analysis according to the uncertainty, the sensitivity analysis was carried out using fluctuation magnitude of discount rate in the period of 2000 to 2009. As a result, LCC analysis evaluated by discount rate was stable for the uncertain factors since the cost leadership did not change even though the sensitivity analysis varied. In summary, the economic evaluation using LCC analysis could be an efficient reference to choose the suitable livestock manure treatment plants. Furthermore, standardization of statement calculation for the actual cost analysis should be conducted and more detailed study is necessary to validate this summary. Therefore, the application of comprehensive technology evaluation, which considers LCC analysis, should contribute in obtaining objectivity and enhancing reliability for the 'Evaluation of Livestock Manure Treatment System and its Technology'.