• Title/Summary/Keyword: 헬리콥터 로터 소음

Search Result 45, Processing Time 0.024 seconds

Development of an Intelligent Active Trailing-edge Flap Rotor to Reduce Vibratory Loads in Helicopter (헬리콥터의 진동하중 저감을 위한 지능형 능동 뒷전 플랩 로터 제어 시스템 개발)

  • Lee, Jae-Hwan;Choe, Jae-Hyeok;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.492-497
    • /
    • 2011
  • Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. Those are at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle at arbitrary frequencies. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to modify the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  • PDF

Thickness and Loading Noise from Helicopter Rotor at various Pitch Angles (피치각 변화에 따른 헬리콥터 로터에서의 두께 및 하중소음 방사)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.868-874
    • /
    • 2007
  • Noises from the helicopter rotor model are calculated numerically at various pitch angles. The aerodynamic data are calculated by using prescribed wake model and unsteady panel method. The distribution of aerodynamic loads on the blade surface are obtained from $0^{\circ}$ to $9^{\circ}$ pitch angles with equiangular increments of $1.5^{\circ}$. Although thickness noise is not related to the change of pitch angles, loading noise level increases about 3~4dBA every $1.5^{\circ}$ increment of pitch angle. The additive noise level shows sufficient value to perceive the loudness. From the result of directivity pattern the sound level at the lower region of the blade disc plane is higher than that of the upper region.

The Mach-scale Performance Test of Next-Generation Blade(NRSB- 1M/2M) (차세대 블레이드(NRSB-1M/2M)의 마하 스케일 성능시험)

  • Song, Geun-Ung;Kim, Jun-Ho;Kim, Seung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.27-36
    • /
    • 2006
  • This paper describes the performance test procedures and results of NRSB-1M and NRSB-2M Not only aerodynamic performance test but also sound measurement test were performed for the small-scaled blades in the ground Total thrusts and torques of the rotor were measured using rotating balance for aerodynamic performance test. Sound pressure levels were measured using microphone in 1.64D distance for sound measurement test. Non-dimensionalized test data are compared and analyzed. Consequently, It was confirmed that NRSB-2 was better than NRSB-1.

  • PDF

Hub Parametric Investigation of Main Rotor Stability of Bearingless Helicopter (무베어링 헬리콥터 주 로터의 허브 파라미터 변화에 따른 로터 안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.784-790
    • /
    • 2012
  • This paper describes a stability and dynamic characteristics of bearingless helicopter main rotor in hover. Baseline rotor configuration is defined and modal analysis for the configuration is taken to verify the dynamic characteristics. The kinematic pitch-lag couplings through ways of pitch link installation are analyzed to know effects on loads, frequencies and stability. The effects of pitch link attachments in spanwise direction and chordwise direction as well as pitch link inclination on thrust, power, flpa-lag-pitch mode frequencies and inplane damping are examined. Pitch link at trailing edge location in chordwise direction has influence on aeroelastic stability of the rotor. Also, the pitch link with negative inclination angle makes inplane damping increase.

Hub Parametric Investigation of Main Rotor Stability of Bearingless Helicopter (무베어링 헬리콥터 주 로터의 허브 파라미터 변화에 따른 로터 안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.394-399
    • /
    • 2012
  • This paper describes a stability and dynamic characteristics of bearingless helicopter main rotor in hover. Baseline rotor configuration is defined and modal analysis for the configuration is taken to verify the dynamic characteristics. The kinematic pitch-lag couplings through ways of pitch link installation are analyzed to know effects on loads, frequencies and stability. The effects of pitch link attachments in spanwise direction and chordwise direction as well as pitch link inclination on thrust, power, flpa-lag-pitch mode frequencies and inplane damping are examined. Pitch link at trailing edge location in chordwise direction has influence on aeroelastic stability of the rotor. Also, the pitch link with negative inclination angle makes inplane damping increase.

  • PDF

The Measurement Test of Stiffness and Natural Frequencies for Bearingless Rotor System of Helicopter (헬리콥터용 무베어링 로터 시스템의 강성 및 고유 진동수 측정)

  • Yun, Chul Yong;Kim, Deog-kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.881-887
    • /
    • 2015
  • The stiffness and natural frequencies for blades, flexbeam, and torque tube of bearingless rotor system are measured to determine the material input properties such as mass distributions and stiffness distribution for the rotor dynamics and load analysis. The flap stiffness, lag stiffness, and torsional stiffness are calculated by measuring section strain or twist angle, gages position, and applied loads through bending and twist tests. The modal tests are undertaken to find out the natural frequencies for flap, lag, torsion modes in non-rotating conditions. The stiffness values and mass properties are tuned and updated to match prediction frequencies to the measured frequencies. The rotorcraft comprehensive code(CAMRAD II) is used to analyze the natural frequencies of the specimens. The analysis results with the updated material properties agree well with the measured frequencies. The updated properties will be used to analyze the rotor stability, dynamic characteristics and loads for the rotor rotation test in a whirl tower.

A Conceptual Study on the Bearingless Rotor Hub System of Helicopter (헬리콥터 무베어링 로터 허브시스템의 개념 연구)

  • Kim, Deog-Kwan;Kim, Min-Hwan;Yun, Chul-Yong;Kim, Tae-Joo;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.484-489
    • /
    • 2011
  • In this paper, it was described the current technology status of bearingless rotor hub system for helicopter which is one of major rotor hub system. Also, a conceptual study on the new bearingless rotor hub system of helicopter was described. First, the advantages and disadvantages of major helicopter rotor hub system are described in comparison to each other types of rotor hub system. The unique characteristics of bearingless rotor hub system are described compared to other types of rotor hub systems. Next, the main function, role and characteristics of the sub-components of bearingless rotor hub system are described. Recent helicopters which adopt this bearingless rotor hub system are described and introduced. This conceptual study shows that double-H sectional construction and rectangular construction of flexbeam are the most effective candidates of this new bearingless rotor system. This bearingless rotor hub system can be used for 7,000lbs class helicopter. Now, a further trade-off study will show.

  • PDF