• 제목/요약/키워드: 헤드-서스펜션

검색결과 8건 처리시간 0.021초

자기 회전 디스크와 헤드의 충격해석 (Shock Analysis of Magnetic Rotating Disk and Head)

  • 장영배;박대경;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.533-538
    • /
    • 2002
  • This research demonstrates the transient response of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. head-suspension system is modeled by the cantilever in order to get simulation results. Simulation results about total system of HDA are calculated by Runge-Kutta method.

  • PDF

지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석 (Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD)

  • 서찬희;이호성;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

고트랙밀도 HDD 서스펜션의 동특성 해석 (suspension dynamics of HDD for high track density)

  • 김정주;전정일;변용규;노광춘;정정주;전태건
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1885-1895
    • /
    • 1997
  • As track density needs to increase to the order of 10, 000 tpi, the suspension has become a critical component in hard disk drives. One of the main obstacles to attain high track density is the structural resonances of the suspension in lateral direction. We investigate the suspension dynamics through the experimental modal analysis and the finite element method. An LDV (Laser Doppler Vibrometer) is employed to measure the response of the suspension which is excited by a shaker and an inpulse hammer for the free condition and the loaded condition, respectively. After comparing the experimental and numerical results, we study how the initial geometry of the bend region affects the suspension dynamics. It is found that the natural frequency of the sway mode decreases as the bend ratio and the bend angle increase. The shape of torsional mode changes as the mass of a slider increases, resulting in a local decrease in the natural frequency.

지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석 (Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD)

  • 서찬희;이호성;장건희
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

하드디스크 드라이브의 회전속도 변화에 따른 디스크와 헤드의 충격해석 (Shock Analysis of Head and Disk in Hard Disk Drive According to Various Rotating Speed)

  • 박대경;박노철;박영필
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1075-1082
    • /
    • 2004
  • This research demonstrates the shock response analysis of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. Head-suspension system is modeled as the cantilever in order to get simulation results. Simulation results of HDA are calculated by Runge-Kutta method. Finally, shock responses of head and disk are analyzed according to the change of the rotating speed of the disk.

마그네틱 헤드 슬라이더의 극소 공기막에 대한 동특성 해석 (Dynamic analysis of magnetic head slider at ultra low clearance)

  • 장인배;한동철
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1487-1494
    • /
    • 1990
  • 본 연구에서는 공기분자간 평균 자유비형거리(molecular mean free path)를 고려한 수정된 레이놀즈 방정식을 공기막 두께의 미소 교란항에 대하여 전개하여 비선 형 정적 평형방정식과 교란 미분방ㄹ정식을 구하였다. 비선형 정적 평형방정식을 슬 라이더의 정량적인 거동형태를 표시하므로 이를 이용하여 슬라이더의 정적특성을 구할 수 있다. 이에 반하여, 동적 교란미분 방정식은 슬라이더의 간극함수에 대한 각종 교란에 의하여 유발되는 반발압력을 정성적으로 나타내므로, 슬라이더의 외부교란에 대한 응답특성 및 자기복원특성 등을 구할 수 있다. 이러한 특성을 서스펜션에 부착 된 헤드 시스템의 운동방정식에 함께 고려하여 시스템의 동적 특성을 해석하고 슬라이 더의 설계변수가 이에 미치는 영향을 고찰하고저 한다.

초소형 광자기 드라이브용 HGA의 신뢰성 및 충격 해석 (Probabllistic and Shock Analysis of Head-gimbal Assembly in Micro MO Drives)

  • 오우석;박노철;양현석;박영필;홍어진
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1347-1353
    • /
    • 2004
  • With respect to the researches of the optical flying head(OFH) , the head-gimbal assembly should be analyzed to guarantee the stable fabrication and the characteristics of shock resistance. The suitable design is proved through the Probabilistic analysis of the design parameters and material properties of the model. Probabilistic analysis is a technique that be used to assess the effect of uncertain input parameters and assumptions on your analysis model. Using a probabilistic analysis you can find out how much the results of a finite elements analysis are affected by uncertainties in the model. Another factor is analysis of the dynamic shock analysis. For the mobile application, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes in contact with outer shock disturbance. the system gets critical damage in head-gimbal assembly or disk. This paper describes probabilistic and dynamic shock analysis of head-gimbal assembly in micro MO drives using OFH slider.

회전 디스크-스핀들, 액츄에이터와 지지구조의 유연성을 고려한 하드 디스크 드라이브의 고유 및 강제 진동 해석 (Free and Forced Vibration Analysis of a Hard Disk Drive Considering the Flexibility of Spinning Disk-Spindle, Actuator and Supporting Structure)

  • 서찬희;장건희;이호성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.660-665
    • /
    • 2006
  • This paper presents a finite element method to analyze the free and forced vibration of a hard disk drive (HDD) considering the flexibility of a spinning disk-spindle with fluid dynamic bearings (FDBs), an actuator with pivot bearings, an air bearing between head-disk interface and the base with complicated geometry. Finite element equation of each component is consistently derived with the satisfaction of the geometric compatibility of the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. The actuator am, E-block, suspension and base plate are modeled by tetrahedral elements. The pivot bearing in the actuator and the air bearing between head-disk interfaces are modeled by the stiffness element with five degrees of freedom and the axial stiffness, respectively. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem with the restarted Arnoldi iteration method. Modal and shock testing are performed to show that the proposed method well predicts the vibration characteristics of a HDD.

  • PDF