• Title/Summary/Keyword: 헤드/디스크 인터페이스

Search Result 14, Processing Time 0.025 seconds

Effect of Reduced Ambient Pressure on the Tribological Behavior of Head/Disk Interface (대기압 저감에 따른 헤드/디스크 인터페이스의 트라이볼로지 특성 분석)

  • 한동국;박준우;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.303-309
    • /
    • 1999
  • Optimum tribological performance of the head/disk system is critical in maintaining reliable data processing in a hard disk drive. Particularly, as the flying height of the slider continues to decrease with increasing recording density, frictional interaction between the slider and the disk need to be better understood. In this work the effect of reduced ambient pressure on the tribological behavior of the head/disk interface is presented. It is found that surface damage of the components can be accelerated by reducing the ambient pressure. This method may be utilized to assess slider/disk compatibility of newly developed systems in short time.

  • PDF

Study on the Effect of Particles Injected Into the Head/Disk Interface (헤드-디스크 인터페이스에 주입되는 입자의 영향에 대한 연구)

  • Han Je-Hee;Lee Rae-Jun;Kim Dae-Eun;Kang Tae-Sik;Cho Keung-Youn
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.179-183
    • /
    • 2005
  • Particles in the HDD can cause serious damages such as scratches and thermal asperity(TA) at the head/disk interface(HDI). Accordingly, particles cause data loss including physical and electrical damages. To improve the reliability of head-disk interface, understanding the damage characteristics at the HDI due to particle interactions is required. The materials such as $A1_2O_3$, TiC and aluminum were used in this experiment. The size and hardness of particles injected into the HDI are closely relevant to surface damage caused the data loss on the disk and head. In this paper, a variety of scratches were analyzed using scanning electron microscope(SEM) and atomic force microscope(AFM). In order to analyze defects of very small size on the disk, optical surface analyzer(OSA) was also used.

  • PDF

A High Performance Flash Memory Solid State Disk (고성능 플래시 메모리 솔리드 스테이트 디스크)

  • Yoon, Jin-Hyuk;Nam, Eyee-Hyun;Seong, Yoon-Jae;Kim, Hong-Seok;Min, Sang-Lyul;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.378-388
    • /
    • 2008
  • Flash memory has been attracting attention as the next mass storage media for mobile computing systems such as notebook computers and UMPC(Ultra Mobile PC)s due to its low power consumption, high shock and vibration resistance, and small size. A storage system with flash memory excels in random read, sequential read, and sequential write. However, it comes short in random write because of flash memory's physical inability to overwrite data, unless first erased. To overcome this shortcoming, we propose an SSD(Solid State Disk) architecture with two novel features. First, we utilize non-volatile FRAM(Ferroelectric RAM) in conjunction with NAND flash memory, and produce a synergy of FRAM's fast access speed and ability to overwrite, and NAND flash memory's low and affordable price. Second, the architecture categorizes host write requests into small random writes and large sequential writes, and processes them with two different buffer management, optimized for each type of write request. This scheme has been implemented into an SSD prototype and evaluated with a standard PC environment benchmark. The result reveals that our architecture outperforms conventional HDD and other commercial SSDs by more than three times in the throughput for random access workloads.

A Distributed VOD Server Based on Virtual Interface Architecture and Interval Cache (버추얼 인터페이스 아키텍처 및 인터벌 캐쉬에 기반한 분산 VOD 서버)

  • Oh, Soo-Cheol;Chung, Sang-Hwa
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.10
    • /
    • pp.734-745
    • /
    • 2006
  • This paper presents a PC cluster-based distributed VOD server that minimizes the load of an interconnection network by adopting the VIA communication protocol and the interval cache algorithm. Video data is distributed to the disks of the distributed VOD server and each server node receives the data through the interconnection network and sends it to clients. The load of the interconnection network increases because of the large amount of video data transferred. This paper developed a distributed VOD file system, which is based on VIA, to minimize cost using interconnection network when accessing remote disks. VIA is a user-level communication protocol removing the overhead of TCP/IP. This papers also improved the performance of the interconnection network by expanding the maximum transfer size of VIA. In addition, the interval cache reduces traffic on the interconnection network by caching, in main memory, the video data transferred from disks of remote server nodes. Experiments using the distributed VOD server of this paper showed a maximum performance improvement of 21.3% compared with a distributed VOD server without VIA and the interval cache, when used with a four-node PC cluster.