• Title/Summary/Keyword: 헌종

Search Result 205, Processing Time 0.025 seconds

A study on thermal characteristics of linear motor for high speed machining tools (공작기계 고속이송용 리니어 모터의 열 특성에 관한 연구)

  • 정일용;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.98-101
    • /
    • 2001
  • Linear motor feature a direct connection to the machine tool, therefore a direct route for heat transfer. The heat dissipation of linear motor machine is affected by the maximum temperature rise of the primary part, coil and the cooling method. To minimize temperature induced dimension changes and decrements of performance, linear motor machine require effective cooling mechanism. To evaluate cooling performance of existing linear motor machine, some experiments about temperature profile are performed using thermocouple recorder. Due to the lack of information about internal structure, only some finite element modeling is prepared and analyzed.

  • PDF

Micro-hole Machining Technology for using Micro-tool (마이크로 공구를 이용한 미세 구멍 가공기술)

  • 허남환;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1897-1901
    • /
    • 2003
  • Recently, with the development of semiconductor technology the miniaturization of products as well as parts and the products with high precision are being required. In addition as a national competitive power is increasingly effected by micro part development through micro machining and the secure of micro machining technology, the study of micro machining technology is being conducted in many countries. The goal of this study is to fabricate micro tool under the size of 30$\mu\textrm{m}$ and machine micro holes through micro tool fabrication by grinding, the application of ELID to grinding wheel and the measurement of surface roughness for micro tool.

  • PDF

A Study on the Micro Tool Fabrication using Electrolytic In-process Dressing (전해 연속 드레싱을 이용한 마이크로 공구 제작)

  • 이현우;최헌종;이석우;최재영;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.171-178
    • /
    • 2002
  • With increasing the needs for micro and precision parts, micro machining technology using micro tools has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. Though these micro tools have developed rapidly, it is difficult to apply them to micro fabrication technologies, because of the inherent manufacturing. In this study, micro tools (WC) to produce micro structures and parts were manufactured by cylindrical grinding machine employing ELID (Electrolytic In-process Dressing) technique and the micro tools are fabricated as square shape with the dimension less than 100${\mu}{\textrm}{m}$. With the micro tools on the same machine, characteristics of micro grooving and drilling are evaluated. Also we compare normal micro machining with ultrasonic micro machining on the vibration table. It is confirmed that the developed micro tools are fully applicable to micro grooving, micro drilling and free form cutting.

A study on thermal and driving characteristics of linear motor for high speed machining tools (공작기계 고속이송용 리니어 모터의 열특성 및 운동특성에 관한 연구)

  • 최헌종;정일용;강은구;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.414-419
    • /
    • 1997
  • Linear motor feature a direct connection to the machine tool, therefore a direct route for heat transfer. The heat dissipation of linear motor machine is affected by the maximum temperature rise of the primary part, coil and the cooling method. To minimize temperature induced dimension changes and decrements of performance, linear motor machine require effective cooling mechanism. 1'0 evaluate cooling performance of existing linear motor machine, some experiments about temperature profile are performed and evaluated using thermocouple recorder. Due to the lack of information about internal structure. only some finite element modelling is prepared and analyzed.

  • PDF

Development of Machining Technology for Micro Dies and Molds (미세금형제작을 위한 가공기술개발)

  • 이응숙;신영재;강재훈;제태진;이재경;이현용;이상조;최헌종;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1047-1050
    • /
    • 2000
  • As the progress of new industrial products or parts technology, the precise and fine machining technologies are needed more and more. Micro fabrication technology of these products are usally consisted of mechanical machining or MEMS technology. Direct machining by mechanical method is not applicable to mass production. MEMS technology also has several problems such as low mechanical strength, bad surface roughness and difficulty of 3 dimensional machining. In this study, we introduce several micro fabrication technology to make micro molds and dies and our project to develop these machining technology.

  • PDF

A Study on the Environment-Friendly Grinding Technology through Minimizing Coolant (냉각액 최소화를 통한 환경 친화적 연삭 가공기술 연구)

  • 최헌종;이석우;김대중;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.796-799
    • /
    • 2000
  • The concern of environmental problems by using coolant required the recycling technologies of used coolant and development of environmental-firiendly coolant Some methods have been developing. Those are the dry grinding with compressed cold air and grinding with misted coolant. The farmer is effective in the cooling effect, but has not the performance of lubrication. Otherwise, the latter can satisfy both of them and also decrease the environmental pollution. This paper tried to analyze the cooling effect and surface integral of coolant, compressed cold air, mist through measuring the temperature of grind point and grinding force. Especially, the grinding method with misted coolant according to parameters was done. So, the finding method with misted coolant proved to be effective as one of methods to decrease the environmental pollution.

  • PDF

A Study on Optimal Design of Perpendicular Guideway Mechanism (수직 이송계의 최적 설계에 관한 연구)

  • 이석우;최헌종;황보승;김대중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.982-986
    • /
    • 2000
  • Perpendicular guideway mechanism has a different behavior with horizontal guideway mechanism due to the slider weight. So, to decrease its weight effect, counter balances such as weight type and hydraulic cylinder type are used. But it can also make another motion behavior by weight rate of slider and counter balance, its connected position. Therefore, it is necessary to find design parameters and analyze their effect. This paper dealt with the optimal design of perpendicular guideway mechanism. For analysis, the theoretic model as same as real machine tool and sib plate to adjust the clearance was used. Rotational angle and displacement of slider, pressure distribution, friction distribution were calculated. Stick slip, intermittent motion of slider according to friction change was adapted to the perpendicular guideway mechanism.

  • PDF

A Study on the Machining Characteristic of DLC Coated Mold Material Using FIB (FIB를 이용한 DLC소재의 가공공정에 관한 연구)

  • Hong, W.P.;Choi, B.Y.;Kang, E.G.;Lee, S.W.;Choi, H.Z.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.224-230
    • /
    • 2009
  • FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis and IC error correction, etc. Currently, FIB is not being applied to the fabrication of the micro and nano-structured mold, because of low productivity. And also sputtering rate has been required to fabricate 3D shape. In the paper, we studied the FIB-Sputtering rate according to mold materials. And surface roughness characteristics had been analysed for micro or nano mold fabrication. Si wafer, Glassy Carbon, STAVAX and DLC that have been normally considered as good micro or nano mold materials were used in the study.

Prediction of Surface Roughness using double ANN and the Efficient Machining Database Building Scheme in High Speed Machining (고속가공에서 2중 신경망을 이용한 표면거칠기 예측과 가공DB 구축 효율화 방안)

  • 원종률;남성호;유송민;이석우;최헌종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.411-415
    • /
    • 2004
  • In this paper, a double artificial neural network (ANN) approach and the efficient machining database building scheme are presented for the prediction of surface roughness in high-speed machining. In this approach, 4 machining parameters and used for the prediction of cutting force components, and the combinations of 4 parameters and the predicted cutting force components are finally used for the prediction of surface roughness. The experimental results comparing the these results with the predicted values using simple 4 input nodes have been also investigated to verify the effectiveness of the proposed approach.

  • PDF

Analysis on FIB-Sputtering Process using Taguchi Method (다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석)

  • Lee, Seok-Woo;Choi, Byoung-Yeol;Kang, Eun-Goo;Hong, Won-Pyo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.