• Title/Summary/Keyword: 허혈/재관류

Search Result 139, Processing Time 0.03 seconds

Effect of Superior Cervical Sympathetic Ganglion Block on Brain Injury Induced by Focal Cerebral Ischemia/Reperfusion in a Rat Model (상경부교감신경절블록이 백서의 국소 뇌허혈/재관류로 인한 뇌 손상에 미치는 영향)

  • Lee, Ae Ryoung;Yoon, Mi Ok;Kim, Hyun Hae;Choi, Jae Moon;Jeon, Hae Yuong;Shin, Jin Woo;Leem, Jeong Gill
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.83-91
    • /
    • 2007
  • Background: Cerebral blood vessels are innervated by sympathetic nerves that originate in the superior cervical ganglia (SCG). This study was conducted to determine the effect of an SCG block on brain injury caused by focal cerebral ischemia/reperfusion in a rat model. Methods: Male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (lidocaine, ropivacaine, and control). After brain injury induced by middle cerebral artery (MCA) occlusion/reperfusion, the animals were administered an SCG bloc that consisted of $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine, with the exception of animals in the control group, which received no treatment. Twenty four hours after brain injury was induced, neurologic scores were assessed and brain samples were collected. The infarct and edema ratios were measured, and DNA fragmented cells were counted in the frontoparietal cortex and the caudoputamen. Results: No significant differences in neurologic scores or edema ratios were observed among the three groups. However, the infarct ratio was significantly lower in the ropivacaine group than in the control group (P < 0.05), and the number of necrotic cells in the caudoputamen of the ropivacaine group was significantly lower than in the control group (P < 0.01). Additionally, the number of necrotic and apoptotic cells in theropivacaine group were significantly lower than inthe control group in both the caudoputamen and the frontoparietal cortex (P < 0.05). Conclusions: Brain injury induced by focal cerebral ischemia/reperfusion was reduced by an SCG block using local anesthetics. This finding suggests that a cervical sympathetic block could be considered as another treatment option for the treatment of cerebral vascular diseases.

Effect of Jesaeng-sinkihwan on Renal Dysfunction in Ischemia/Reperfusion-Induced Acute Renal Failure Mouse (제생신기환이 허혈-재관류로 유발된 급성 신부전 마우스에 미치는 효과)

  • Han, Byung Hyuk;Lee, Hyeon Kyoung;Jang, Se Hoon;Tai, Ai Lin;Yoon, Jung Joo;Kim, Hye Yoom;Lee, Yun Jung;Lee, Ho Sub;Kang, Dae Gill
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Renal ischemia-reperfusion injury(IRI), an important cause of acute renal failure (ARF), cause increased renal tubular injury. Jesaeng-sinkihwan (JSH) was recorded in a traditional Chines medical book named "Bangyakhappyeon (方藥合編)". JSH has been used for treatment of diabetes and glomerulonephritis with patients. Here we investigate the effects of Jesaeng-sinkihwan (JSH) in a mouse model of ischemic acute kidney injury. The animals model were divided into four groups at the age of 8 weeks; sham group: C57BL6 male mice (n=9), I/R group: C57BL6 male mice with I/R surgery (n=9), JSH Low group: C57BL6 male mice with surgery + JSH 100 mg/kg/day (n=9) and JSH High group: C57BL6 male mice with surgery + JSH 300 mg/kg/day (n=9). Ischemia was induced by clamping the both renal arteries during 25 min, and reperfusion was followed. Mouse were orally given with JSH (100 and 300 mg/kg/day during 3 days after surgery. Treatment with JSH significantly ameliorates creatinine clearance(Ccr), Creatinine (Cr) and blood urea nitrogen(BUN) in obtained plasma. . Treatment with JSH reduced kidney inflammation markers such as Neutrophil Gelatinase Associated Lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). JSH also reduced the periodic acid schiff (PAS) staining intensity and picro sirius red staining intensity in kidney of I/R group. These findings suggest that JSH ameliorates tubular injury including renal dysfunction in I/R induced ARF mouse.

Effects of ischemic preconditioning, KATP channel on the SOD activation and apoptosis in ischemic reperfused skeletal muscle of rat (허혈양상화와 KATP 통로가 허혈후 재관류된 흰쥐의 골격근육에서 SOD 활성 및 apoptosis에 미치는 영향)

  • Abn, Dong-choon;Paik, Doo-jin;Yang, Hong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.878-895
    • /
    • 1999
  • Ischemic preconditioing (IPC), i.e., a preliminary brief episode of ischemia and reperfusion, has been shown to reduce the cell damage induced by long ischemia and reperfusion. Superoxide radical which is produced during reperfusion after ischemia was recognized as a factor of the ischemic injury and it is dismutated into $H_2O_2$ and $O_2$ by two types of intracellular superoxide dismutase (SOD), Cu,Zn-SOD in cytoplasm and Mn-SOD in mitochondria. Recently oxygen free radicals are suggested to induce the apoptosis, however mechanism of the reduced apoptosis by ischemic preconditioing was unknown, while many studies performed in mammalian heart indicated that ATP-sensitive $K^+$ ($K_{APT}$) channel activation related with the protective effects. The aim of present study is to investigate 1) whether IP upregulate the Cu,Zn-SOD and Mn-SOD activities, and 2) whether ischemic preconditioning decreases apoptosis via $K_{APT}$ channel activation in timely reperfused skeletal muscle after long ishemia. The experimental animals, Sprague-Dawley rats weighing 250~300g, were divided into 8 groups; 1) control group, 2) ischemic preconditioning only groups, 3) pinacidil, a $K_{APT}$ channel opener, treatment only groups, 4) glibenclamide, a $K_{APT}$ channel blocker, treatment only groups, 5) ischemia groups, 6) ischemia after IPC groups, 7) ischemia and pinacidil treatment groups, and 8) IP and ischemia after glibenclamide pretreatment groups. Animals of the control group were administered with the vehicle (DMSO) alone. Pinacidil (1mg/kg) was administered intravenously 5 minutes after initiation of ischemia, and glibenclamide (0.5mg/kg) was injected intravenously 20 minutes before IPC. In rats that were ischemic preconditioned, the left common iliac artery was occluded for 5 minutes followed by 5 minutes of reperfusion by three times using vascular clamp. Ischemia was done by occlusion of the same artery for 4 hours. The specimens of left rectus femoris muscle were obtained immediately (0 hour), 12 hours, 24 hours after drug administrations, IP or ischemia and reperfusion. The immunoreactivities of SOD and its alterations were observed by use of sheep antihuman Cu,Zn-SOD and Mn-SOD antibodies on the $10{\mu}m$ cryosections. The incidencies of apoptosis were observed by TUNEL methods with in situ apoptosis detection kit on $6{\mu}m$ paraffine section. The results obtained were as follows : 1. After IPC, immunoreactivities of Cu,Zn-SOD mainly in the small-sized fibers were increased by 24 hours, that of Mn-SOD at 0 hour and 24 hours. 2. No significant changes in immunoreactivities of SOD was observed in the pinacidil and in the glibenclamide treatment only groups, and in the ischemia only groups. 3. The immunoreactivities of the Cu,Zn-SOD were increased in the ischemia after IPC groups and the ischemia and pinacidil treatment groups. 4. The immunoreactivities of the Cu,Zn-SOD in the IPC and ischemia after glibenclamide pretreatment groups were not increased except for the 12 hours reperfusion group. But, Mn-SOD immunoreactivities were increased in the 0 hours, 12 hours and 24 hours after reperfusion. 5. In the control group, the IPC only groups, and the pinacidil treatment only groups, negative or trace apoptotic reactions were observed, but the positive apoptotic reaction occured in the glibenclamide treatment groups. 6. Moderate or many number of apoptosis were revealed in the ischemia groups, and also the IPC and ischemia after glibenclamide pretreatment group except for 12 hours and 24 hours after reperfusion. However, the incidence of apoptosis was decreased in the ischemia after IPC groups and in the ischemia and pinacidil treatment groups. 7. There is a coincidence between the increase of Cu,Zn-SOD immunoreactivities and the decrease of apoptosis in the presence of ischemia and reperfusion. These results suggest that the protective effects of ishemic preconditioing may related to the SOD activation, and the ischemic preconditioning decreases the apoptosis partially via $K_{APT}$ channel activation in timely reperfused rat skeletal muscle. It is also suggested that inhibition of apoptosis by IPC may related with the SOD activation.

  • PDF

Comparison of Myocardial Protective Effect between the Cold Blood Cardioplegia and Histidine-Tryptophan-Ketoglutarate Solution (심정지 시 냉혈 심정지액과 Histidine-Tryptophan-Ketoglutarate 용액의 심근보호 효과에 대한 비교 분석)

  • 이덕헌;금동윤;최세영;이광숙;유영선;박남희
    • Journal of Chest Surgery
    • /
    • v.37 no.9
    • /
    • pp.735-741
    • /
    • 2004
  • Blood cardioplegia is known as an established cardioplegic solution during open heart surgery. Recently, the Histidine-Tryptophan-Ketoglutarate (HTK) solution has been introduced as a cardioplegia in Korea. This study was designed to compare the myocardial protective effect between the cold blood cardioplegia (CBC) and HTK solution. Material and Method: Forty patients who underwent valve surgery or coronary artery bypass surgery were randomly divided into CBC group (n=20) and HTK group (n=20). The perioperative hemodynamic and clinical data were analyzed. The concentration of CK-MB, Troponin 1 and Lactate from coronary sinus and radial arterial blood were compared for the evaluation of the myocardial damage. The postoperative serial CK-MB levels were measured. Result: The characteristics of preoperative patients were similar in two groups. The hemodynamic parameters and postoperative clinical data were also similar between the two groups. There were no statistical significances between the CBC and HTK group in the difference of biochemical markers: Δ CK-MB (15.3$\pm$26.0 vs 19.3$\pm$14.3), ΔTro-1 (2.4$\pm$4.9 vs 2.0$\pm$2.20), ΔLac (1.6$\pm$1.0 vs 1.9$\pm$2.5). The serial CK-MB levels were not significantly different between the two groups. Conclusion: These results suggested that the myocardial protective effect of HTK solution was similar to cold blood cardioplegia during open heart surgery.

Changes in Infarct Size after Reperfusion with Time in a Reversible Cerebral Ischemic Model in Rats (백서의 가역성 뇌허혈 모형에서 재관류 시간에 따른 뇌경색 크기의 변화)

  • Jung, Byoung Woo;Choi, Byung-Yon;Cho, Soo-Ho;Kim, Oh-Lyong;Bae, Jang-Ho;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.9
    • /
    • pp.1171-1178
    • /
    • 2000
  • Objective : The purpose of the present study was to determine the appropriate time of clinical intervention by observing and analyzing the changes in the size of infarct, penumbra and cerebral edema and the extend of neurological deficit due to reperfusion damage according to time in a reversible cerebral ischemic model of reperfusing blood flow after inducing ischemia by maintaining middle cerebral artery occlusion for 2 hours(h) in rats. Methods : The rats were divided according to reperfusion time into control group(0 h reperfusion time) and experimental groups(0.5, 1, 2, 3, 4, 5, 6, 12, and 24 h of reperfusion time). Results : Changes in the size of infarction due to reperfusion damage were 0.93, 1.48 and 1.16% at 0.5, 1 and 2 h after reperfusion, respectively, and although a statistical significance was not present compared to 1.35% of the control group, damages increased drastically up to 6 h(6.64%), and the size increased were 6.65 and 6.78% at 12 and 24 h, respectively. Also there was no significant difference after 6 h up to 24 h in the size of infarction. In the areas where infarction occurred, reperfusion damage increased significantly with time in cortex than in subcortex. Accordingly, the size of penumbra area also showed a statistically significant decrease from 2 h up to 6 h after reperfusion, and 6 h after reperfusion, the area almost disappeared, becoming permanent infarction. Thus, reperfusion damage showed a significant increase from 2 h up to 6 h after reperfusion, and became steady thereafter. As for the mean ratio of the extend of cerebral edema, the control group and reperfusion 0.5 h group were 1.073 and 1.081, respectively ; up to 2 h thereafter, the ratio decreased to 1.01 but increased again with time ; and in reperfusion 12 h and reperfusion 24 h, the ratios were 1.070 and 1.075, respectively, showing similar size with that of control group. As for neurological deficit scores, the score of the control group was 2.67, that of reperfusion 2 h was 2, those of reperfusion 3 h and 6 h groups were 3.2 and 3.8, respectively, and those of reperfusion 12 h and 24 h groups were 4.2 and 4.6, respectively. Thus, as for the test results, the neurological deficit increased with time 2 h after reperfusion, and in reperfusion 12 and 24 h groups, almost all the symptoms appeared. Conclusion : As shown in these results, although the changes in the size of infarction due to reperfusion damage did not increase up to 2 h after reperfusion in the experimental groups compared to the control group, damage increased significantly thereafter up to 6 h, and the size remained about the same from 6 h to 24 h after reperfusion, becoming permanent infarction ; thus, the appropriate time of intervention according to the present study is at least 6 h before after maintaining reperfusion, including the time of cerebral artery occlusion.

  • PDF

The Change of Vascular Reactivity in Rat Thoracic Aorta 3 Days after Acute Myocardial Infarction (흰쥐에서 급성심근경색 3일 후 흉부 대동맥 혈관 반응성의 변화)

  • Lee, Sub;Roh, Woon-Seok;Jang, Jae-Seok;Bae, Chi-Hoon;Park, Ki-Sung;Lee, Jong-Tae
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.576-587
    • /
    • 2009
  • Background: The up-regulation of the nitric oxide (NO)-cGMP pathway might be involved in the change of vascular reactivity in rats 3 days after they suffer acute myocardial infarction. However, the underlying mechanism for this has not been clarified. Material and Method: Acute myocardial infarction (AMI) was induced by occluding the left anterior descending coronary artery (LAD) for 30 min (Group AMI), whereas the sham-operated control rats were treated similarly without LAD occlusion (Group SHAM), The concentration-response relationships for phenylephrine (PE), KCl, acetylcholine (Ach) and sodium nitroprusside (SNP) were determined in the endothelium intact E(+) and endothelium denuded E(-) thoracic aortic rings from the rats 3 days after AMI or a SHAM operation. The concentration-response relationships of PE in the E(+) rings from the AMI rats were compared with those relationships in the rings pretreated with nitric oxide synthase (NOS) inhibitor $N{\omega}$-nitro-L-arginine methyl ester (L-NAME) or the cyclooxygenase inhibitor indomethacin. The plasma nitrite/nitrate concentrations were checked via a Griess reaction. The cyclic GMP content in the thoracic aortic rings was measured by radioimmunoassay and the endothelial nitric oxide synthase (eNOS) mRNA expression was assessed by real time PCR. Result: The mean infarct size (%) in the rats with AMI was $21.3{\pm}0.62%$. The heart rate and the systolic and diastolic blood pressure were not significantly changed in the AMI rats. The sensitivity of the contractile response to PE and KCl was significantly decreased in both the E(+) and E(-) aortic rings of the AMI group (p<0.05). L-NAME completely reversed these contractile responses whereas indomethacin did not (p<0.05). Moreover, the sensitivity of the relaxation response to Ach was also significantly decreased in the AMI group (p<0.05). The plasma nitrite and nitrate content (p<0.05), the basal cGMP content (p<0.05) and the eNOS mRNA expression (p=0.056) in the AMI rats were increased as compared with the SHAM group. Conclusion: Our findings indicate that the increased eNOS activity and the up-regulation of the NO-cGMP pathway can be attributed to the decreased contractile or relaxation response in the rat thoracic aorta 3 days after AMI.

The Effects of Packed Red Blood Cell Washing and Circuit Precirculation-Ultrafiltration on the Production of Cytokines by Open Heart Surgery (충전용 농축적혈구의 세척 및 체외순환로의 전순환-초여과법이 개심수술에 의한 사이토카인 형성에 미치는 영향)

  • 전태국;노준량
    • Journal of Chest Surgery
    • /
    • v.35 no.3
    • /
    • pp.199-208
    • /
    • 2002
  • Background: The washing of packed red blood cells could remove pro-inflammatory mediators, cell debris, and micro-particles contained in packed red blood cells, and the preci-rculation-ultrafiltration (recirculation and ultrafiltration of circuit itself before cardiopulmonary bypass) could attenuate the initial inflammatory reaction and remove the initial proinflam-matory mediators. This study was performed to evaluate whether the washing of packed red blood cells and precirculation-ultrafiltration can reduce the production of cytokines that have an important role in myocardial reperfusion injury. This study investigated the effects of washing the packed red blood cells and precirculation-ultrafiltration on the production of cytokines during and after cardiopulmonary bypass and open heart surgery. Material and Method: Forty eight infants with VSD undergoing open heart surgery under cardiopulmonary bypass were randomized into control group (group C, n=12), washing group (group W, n= 12), precirculation-ultrafiltration group (group F, n: 12), and combined group(washing and precirculation-ultrafiltration, group WF, n=12). Blood samples were obtained before, during, and after the bypass to assess plasma level of tumor necrosis factor-$\alpha$(TNF-$\alpha$), interleukin-6(IL-6), and interleukin-8 (IL-8). Results: Expressions of TNF-$\alpha$ were significantly reduced in combined group (group WF) compared with group C, group W, and group F (p<0.05). Expression of IL-6 were significantly reduced in group W, group F, and group WF compared with group C (p<0.05), but similar among group W, group F, and group WF (p=0.053). Expression of IL-8 were reduced in group W and group WF compared with group C (p<0.05), but similar among group W, group F, and group WF (p=0.067). Conclusion: In conclusion, the washing of packed red blood cells and precirculation-ultrafiltration blunted the increase of TNF-$\alpha$ , IL-6, and IL-8 during and after open heart surgery with cardiopulmonary bypass. However, the clinical benefits of these treatments remains unproven.

A Comparison of the Effects of Histidine-tryptophan-ketoglutarate Solution versus Cold Blood Cardioplegic Solution on Myocardial Protection in Mitral Valve Surgery (승모판막수술 시 히스티딘를 함유한 결정성 심정지액(Histidine-tryptophan-ketoglutarate Solution)과 저온 혈성 심정지액이 심근기능 보존에 미치는 영향 비교)

  • Choi, Yong-Seon;Bang, Sou-Ouk;Chang, Byung-Chul;Lee, Sak;Park, Chol-Hee;Kwak, Young-Lan
    • Journal of Chest Surgery
    • /
    • v.40 no.6 s.275
    • /
    • pp.399-406
    • /
    • 2007
  • Background: Ischemia-reperfusion injury related to unsuccessful myocardial protection affects postoperative ventricular function and mortality during open-heart surgery. We prospectively compared the effects of administration of histidine-tryptophan-ketoglutarate (HTK) solution and cold blood cardioplegia (CBC) on myocardial protection and clinical outcome in patients undergoing mitral valve surgery. Material and Method: Seventy patients with mitral regurgitation (MR) undergoing mitral valve surgery were randomly divided into the HTK group (n=31) and the CBC group (n=31 ): eight patients were excluded. Perioperative hemodynamics, cardiac medications, pacing, postoperative outcomes and complications were recorded during the hospital stay. All patients received follow-up for at least 6 months postoperatively for morbidity and mortality. Resuか: There were no significant differences in the hemodynamics between the groups during the study period, except for the mean pulmonary artery pressure (MPAP), PCWP and CVP that were lower in the HTK group at 15 min after weaning of CBP. There were no differences for inotropic support and pacing during the 12 hrs postoperatively between the groups. CK-MB values on day 1 and day 2 were $77{\pm}54$ and $41{\pm}23$ for the HTK group and $70{\pm}69$ and $44{\pm}34$ for the CBC group, respectively (p=NS). Postoperative clinical outcomes were similar in both groups for at least 6 months during the follow-up period. Conclusion: These results suggest that the use of HTK solution is as safe as cold blood cardioplegia in terms of myocardial protection.

Inflammatory Reponse of the Lung to Hypothermia and Fluid Therapy after Hemorrhagic Shock in Rats (흰쥐에서 출혈성 쇼크 후 회복 시 저체온법 및 수액 치료에 따른 폐장의 염증성 변화)

  • Jang, Won-Chae;Beom, Min-Sun;Jeong, In-Seok;Hong, Young-Ju;Oh, Bong-Suk
    • Journal of Chest Surgery
    • /
    • v.39 no.12 s.269
    • /
    • pp.879-890
    • /
    • 2006
  • Background: The dysfunction of multiple organs is found to be caused by reactive oxygen species as a major modulator of microvascular injury after hemorrhagic shock. Hemorrhagic shock, one of many causes inducing acute lung injury, is associated with increase in alveolocapillary permeability and characterized by edema, neutrophil infiltration, and hemorrhage in the interstitial and alveolar space. Aggressive and rapid fluid resuscitation potentially might increased the risk of pulmonary dysfunction by the interstitial edema. Therefore, in order to improve the pulmonary dysfunction induced by hemorrhagic shock, the present study was attempted to investigate how to reduce the inflammatory responses and edema in lung. Material and Method: Male Sprague-Dawley rats, weight 300 to 350 gm were anesthetized with ketamine(7 mg/kg) intramuscular Hemorrhagic Shock(HS) was induced by withdrawal of 3 mL/100 g over 10 min. through right jugular vein. Mean arterial pressure was then maintained at $35{\sim}40$ mmHg by further blood withdrawal. At 60 min. after HS, the shed blood and Ringer's solution or 5% albumin was infused to restore mean carotid arterial pressure over 80 mmHg. Rats were divided into three groups according to rectal temperature level($37^{\circ}C$[normothermia] vs $33^{\circ}C$[mild hypothermia]) and resuscitation fluid(lactate Ringer's solution vs 5% albumin solution). Group I consisted of rats with the normothermia and lactate Ringer's solution infusion. Group II consisted of rats with the systemic hypothermia and lactate Ringer's solution infusion. Group III consisted of rats with the systemic hypothermia and 5% albumin solution infusion. Hemodynamic parameters(heart rate, mean carotid arterial pressure), metabolism, and pulmonary tissue damage were observed for 4 hours. Result: In all experimental groups including 6 rats in group I, totally 26 rats were alive in 3rd stage. However, bleeding volume of group I in first stage was $3.2{\pm}0.5$ mL/100 g less than those of group II($3.9{\pm}0.8$ mL/100 g) and group III($4.1{\pm}0.7$ mL/100 g). Fluid volume infused in 2nd stage was $28.6{\pm}6.0$ mL(group I), $20.6{\pm}4.0$ mL(group II) and $14.7{\pm}2.7$ mL(group III), retrospectively in which there was statistically a significance between all groups(p<0.05). Plasma potassium level was markedly elevated in comparison with other groups(II and III), whereas glucose level was obviously reduced in 2nd stage of group I. Level of interleukine-8 in group I was obviously higher than that of group II or III(p<0.05). They were $1.834{\pm}437$ pg/mL(group I), $1,006{\pm}532$ pg/mL(group II), and $764{\pm}302$ pg/mL(group III), retrospectively. In histologic score, the score of group III($1.6{\pm}0.6$) was significantly lower than that of group I($2.8{\pm}1.2$)(p<0.05). Conclusion: In pressure-controlled hemorrhagic shock model, it is suggested that hypothermia might inhibit the direct damage of ischemic tissue through reduction of basic metabolic rate in shock state compared to normothermia. It seems that hypothermia should be benefit to recovery pulmonary function by reducing replaced fluid volume, inhibiting anti-inflammatory agent(IL-8) and leukocyte infiltration in state of ischemia-reperfusion injury. However, if is considered that other changes in pulmonary damage and inflammatory responses might induce by not only kinds of fluid solutions but also hypothermia, and that the detailed evaluation should be study.