• Title/Summary/Keyword: 허용 지지력

Search Result 115, Processing Time 0.029 seconds

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

Foundation Methods for the Soft Ground Reinforcement of Lightweight Greenhouse on Reclaimed Land: A review (간척지 온실 기초 연약지반 보강 방법에 대한 고찰)

  • Lee, Haksung;Kang, Bang Hun;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.440-447
    • /
    • 2020
  • The demand for large-scale horticultural complexes utilizing reclaimed lands is increasing, and one of the pending issues for the construction of large-scale facilities is to establish foundation design criteria. In this paper, we tried to review previous studies on the method of reinforcing the foundation of soft ground. Target construction methods are spiral piles, wood piles, crushed stone piles and PF (point foundation) method. In order to evaluate the performance according to the basic construction method, pull-out resistance, bearing capacity, and settlement amount were measured. At the same diameter, pull-out resistance increased with increasing penetration depth. Simplified comparison is difficult due to the difference in reinforcement method, diameter, and penetration depth, but it showed high bearing capacity in the order of crushed stone pile, PF method, and wood pile foundation. In the case of wood piles, the increase in uplift resistance was different depending on the slenderness ratio. Wood, crushed stone pile and PF construction methods, which are foundation reinforcement works with a bearing capacity of 105 kN/㎡ to 826 kN/㎡, are considered sufficient methods to be applied to the greenhouse foundation. There was a limitation in grasping the consistent trend of each foundation reinforcement method through existing studies. If these data are supplemented through additional empirical tests, it is judged that a basic design guideline that can satisfy the structure and economic efficiency of the greenhouse can be presented.

Design Methodology on Steel-type Breakwater II. Pile Design Procedure (철재형 이안제 설계기법 연구 II. 하부기초 설계 단계)

  • Kwon, Oh-Kyun;Oh, Se-Boong;Kweon, Hyuck-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.219-228
    • /
    • 2011
  • In this paper, the design procedure of substructure of the steel-type breakwater was described and the actual foundation design was performed for the test bed. The site investigation was executed at the Osan-port area, in Uljin, Gyeongbuk, where the steeltype detached breakwater is constructed. The foundation mainly depends on the lateral load and uplift force due to the wave force. Since the superstructure is stuck out about 9.0m from the ocean bed, the foundation must resist on the lateral force and bending moment. After considering various factors, the foundation type of this structure was determined by the steel pipe pile(${\varphi}711{\times}t12mm$). On the stability of pile foundation, the safety factors of the pile on the compressive, lateral and uplift forces were grater than the minimum factor of safety. The displacements of pile under the working load were evaluated as the values below the permissible ones. Based on the subgrade reaction method, we evaluated the relationship of subgrade reaction and displacement for the lateral and the vertical directions in the layers. The structural analyses along with the foundation were perfomed and the effect of pile foundations were compared quantitatively.

Withdrawal and Lateral Resistance of Nail Joints Composed of Dimension Lumber and OSB in Light-Frame Wood Construction (경골목구조에서 구조재와 오에스비로 구성된 못 접합부의 인발 및 전단성능)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • The nailed joints in wood construction are commonly designed to resist and carry the lateral load but also subject to withdrawal force like uplift load due to the wind. This research was conducted to evaluate the performance of nailed joint composed of dimension lumber and sheathing materials through the nail withdrawal and unsymmetric double shear joint test, and then compared to current design values. The withdrawal strength was greatly dependant on wood specific gravity, and the withdrawal strength of I-joist with OSB showed higher value in spite of low specific gravity. The maximum withdrawal loads were greater than that of derived current design values about 5 times. The lateral resistance of Japanese larch/OSB nailed joints was higher than that of SPF/OSB nailed joint, and derived allowable lateral strength of nailed joints in this study exceeded the current design values. The failure mode of nailed joints was primarily due to the nail bending and this tendency was notable in SPF/OSB nailed joint.

A Study on the Selection of Compaction Method in Order to Utilize the Waste Landfill Selected Soils (폐기물매립장 선별토사 활용을 위한 다짐공법 선정에 관한 연구)

  • Nam, Hong-Ki;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.29-40
    • /
    • 2017
  • In this study, the dynamic compaction method was selected by analyzing field situation, soil condition data and compaction test characteristics of the special selected soils, and the compaction method for using the selected soils as the site restoration soil of the ${\bigcirc}{\bigcirc}$ city non-sanitary landfill maintenance project. The N value in the standard penetration test (SPT) before and after dynamic compaction increased by an average of 89% over the range 12~18, and the allowable bearing capacity of the plate bearing test (PBT) was ranged $150{\sim}227kN/m^2$, at least 80% higher than that before test. As a result, it can be seen that the same tendency as the dynamic compaction effect applied to the existing dredging and waste landfill is shown.

A Study on the Optimum Design of Piled-raft Foundation Considering Pile Head Condition (말뚝두부구속조건을 고려한 말뚝지지 전면기초의 최적단면 설계)

  • Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.31-40
    • /
    • 2010
  • This study describes the three-dimensional behavior of pile foundations based on a numerical study. A series of numerical analyses were performed for connectivity conditions between piles and cap under vertical and lateral loadings. It is shown that a fixed connection between pile and cap is able to transfer significant bending moment through the connection and increases the pile lateral stiffness and the bending moment. Based on the results obtained, it was found that the cross sectional shear force in the raft with fixed head condition was larger than that of pinned head condition. Thus, the reinforcement of pile head and thickness of the raft also increases in fixed pile head condition. From the results, it is found that the overall behavior and cross sectional forces of pile foundations is affected significantly by the pile head conditions. Furthermore, the design of pile foundations with pinned head condition was judged to be less costly and very useful for preliminary design stages.

Resistance Factors for Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 저항계수 산정)

  • Yoon, Hong-Jun;Jung, Sung-Jun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.107-116
    • /
    • 2007
  • Load and Resistance Factor Design (LRFD) method is being used increasingly in geotechnical design practice worldwide, and is expected to completely replace the current Allowable Stress Design (ASD) method in the near future. LRFD has advantages over ASD in that it allows the design of superstructures and substructures at a consistent reliable level by quantification of failure probability based on reliability analysis. At present, resistance factors for cast-in-place piles embedded in rocks are determined by AASHTO only for the intact rock conditions. In Korea, however, most of the bedrocks in which piles are embedded are heavily weathered. Thus, this study will try to determine the resistance factors of heavily weathered rocks (so-called intermediate goo-materials). To this aim, reliability analysis was carried out to evaluate the resistance factors of cast-in-place piles embedded in intermediate geo-materials in Korea. Pile load test data of 21 cast-in-place piles of 4 construction sites were used for the analysis. Depending on the method which calculates the pile capacities, the resulting resistance factors ranged between 0.1 and 0.6.

Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System (흡착광산화 시스템을 이용한 효과적인 SSC 페수처리)

  • Kim, Jong Kyu;Lee, Min Hee;Jung, Yong Wook;Joo, Jin Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.

Reinforcing Effect of Buildings Considering Load Distribution Characteristics of a Pre-compressed Micropile (선압축 보강마이크로파일의 하중분담 특성을 고려한 건물 보강효과에 대한 연구)

  • Lee, Kwang Hoon;Park, Yong Chan;Moon, Sung Jin;You, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.825-836
    • /
    • 2022
  • Micropiles can be used to support additional load in extended building structures. However, their use brings about a risk of exceeding the bearing capacity of existing piles. In this study, pre-compression was applied to distribute the load of an existing building to micropiles, and an indoor loading test was performed to confirm the structural applicability of a wedge-type anchorage device designed to improve its capacity. According to the test results, the maximum strain of the anchorage device was 0.63 times that of the yield strain, and the amount of slip generated at the time of anchorage was 0.11 mm, satisfying structural standards. In addition, using MIDAS GTS, a geotechnical finite element analysis software, the effect of the size of the pre-compression, the thickness of the soil layer, and the ground conditions around the tip on the reaction force of the existing piles and micropiles were analyzed. From the numerical analysis, as the size of the pre-compression load increased, the reaction force of the existing pile decreased, resulting in a reduction rate of up to 36 %. In addition, as the soil layer increased by 5 m, the reduction rate decreased by 4 %, and when the ground condition at the tip of the micropile was weathered rock, the reduction rate increased by 14 % compared with that of weathered soil.