• Title/Summary/Keyword: 허용 지지력

Search Result 115, Processing Time 0.032 seconds

Case Study on Design Efficiency and Bearing Capacity Characteristics of Bored PHC Piles (PHC 매입말뚝의 설계효율과 지지력 특성 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Choi, Yong-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.45-53
    • /
    • 2019
  • In this study, it was analyzed the cases of bored PHC piles designed for the building foundations. The overall length of the piles varies within a maximum of 35 m. However, the average length was 17.0 to 18.9 m depending on the kind of the bedrock, with no significant difference. The socket length entered into the bedrock was designed with approximately 58% of the whole piles being 1m, the minimum length of the specification, and up to 5m. Although the range in design efficiency was very large, on average it was about 70%, consistent with the usual known extent. Applications with low design efficiency were mainly shown on the foundation of low-rise buildings or rides with low design load. On the weathered rock, the design load, which governs the design result was widely distributed at 65 to 97% of allowable bearing capacity of ground. The ratio of allowable axial load of piles to allowable bearing capacity of ground is also widely distributed between 36 and 115%, so optimization efforts are required along with design efficiency. On the other hand, the allowable bearing capacity on the soft or hard rock was highly equal, mostly within 90% of the allowable axial load of piles. In the design, the end bearing resistance averaged over 75% of the allowable bearing capacity. However, the results of the dynamic pile load test show that the end bearing resistance was predominant under the E.O.I.D conditions, and in some cases, the end bearing resistance was at least 25% under the restrike conditions.

A Study on the Bearing Capacitiy behavior of Large-diameter Drilled Shafts According to Various Ground Conditions under Pile Tip through Numerical Analysis Results (수치해석 결과 분석을 통한 다양한 말뚝 선단하부의 지반조건에 따른 대구경현장타설말뚝의 지지력 거동에 관한 연구)

  • Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.7-22
    • /
    • 2021
  • In this study, inverse analysis was performed on the bi-directional axial compressive load test conducted on drilled shafts. And the bearing capacities were analyzed by numerical analysis of various pile tip ground conditions of silt clay, silt sand, sand silt, sand gravel, weathered rock, and soft rock. The bearing capacities were analyzed using the P-S method, the Davisson method, and the allowable sttlement of 25.4 mm. The minimum allowable bearing capacities analyzed by three methods were found to be 19.64 MN ~ 24.96 MN. At this time, the base resistances were sharing a 2% ~ 12% of a head load, shaft resistance were shared 88% ~ 98% of the head load. The greater the strength of pile tip was found to increase the allowable bearing capacity. However, the difference between the maximum allowable bearing capacity and the minimum allowable bearing capacity was 5.32 MN, and the increase in the allowable bearing capacity was only 27% depending on the pile tip.

Evaluation of Skin Friction Using Tensile Load Testing of CPR Piles (CPR 말뚝의 인발재하시험을 통한 주면마찰력 평가)

  • Ko, Chin-Surk;Kim, Jung-Han;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • Pull-out load tests were performed on a CPR (Compaction grouting compound Pile with Reinforce) test pile, with skin friction being evaluated by the yield load and allowable bearing capacity after analyzing load-displacement curves and load-settlement curves. Results of the CPR test piles analyzed from the load-displacement curves show that the yield load and allowable bearing capacity of the large-diameter CPR test pile were about 1.4 times larger than that of the small-diameter pile. Results of the load-settlement curves reveal that the allowable bearing capacity of the CPR test pile with diameter of D500 was 1.2~2.1 times greater than that of the pile with diameter of D400. However, the allowable bearing capacity calculated using Fuller's analysis differed substantially from that determined using the P (Pull-out load) - S (Settlement) and log P - log S curves. Therefore, calculation of the allowable bearing capacity using Fuller's analysis is shown to be inappropriate.

The Behavior of Bearing Capacity for the Precast files (기성말뚝의 지지거동)

  • 박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • Dynamic and static load tests are conducted in four construction sites by using steel pipe piles(SPP) and concrete piles to compare differences of load bearing mechanism. Steel pipe piles are instrumented with electric strain gages and are subject to dynamic load tests during driving. The damage of strain gages attached is checked simultaneously. Static load test is also conducted on the same piles after two to seven days' elapse. Then load-settlement behavior and shaft and/or tip resistances are measured. As a result, the allowable bearing capacity calculated by the Davisson's offset method of CAPWAP analysis shows 2~33% larger than that of static load test. The average value of allowable bearing capacity of static load test is closer to the allowable capacity obtained at the safety factor of 2.5 applied on ultimate bearing capacity than to the one obtained from the Davisson's offset method. The analysis of strain gage readings shows that unit skin friction increases with depth. Furthermore, the friction mobilized around the 1~2m above the pile tip considerably contributes to the total shaft resistance.

  • PDF

Bearing Capacity of Shallow Foundation on Geogrid-Reinforced Clay (지오그리드로 보강된 점성토사의 얕은 기초의 지지력)

  • Shin, Bang Woong;Das, Braja M.;Shin, Eun Chul;Chung, Kee Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1439-1444
    • /
    • 1994
  • Laboratory model test results for the ultimate bearing capacity and allowable bearing capacity at various settlement levels conducted on a strip foundation supported by geogrid-reinforced clay soil have been presented. For mobilization of the maximum possible load-carrying capacity, the optimum width and depth of the reinforcement layers, and the location of the first layer of reinforcement with respect to the bottom of the foundation have been determined.

  • PDF

An Evaluation of Allowable Bearing Capacity of Weathered Rock by Large-Scale Plate-Bearing Test and Numerical Analysis (대형평판재하시험 및 수치해석에 의한 풍화암 허용지지력 평가)

  • Hong, Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.61-74
    • /
    • 2022
  • Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.

Estimation of the Roadbed Settlement and Bearing Capacity According to Radius of Curve and Cant in Railroad (철도의 곡선반경 및 캔트에 따른 노반의 침하 및 지지력 산정)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.29-38
    • /
    • 2007
  • The research on the track performance and stability of the tilting-train was performed and the settlement of the roadbed was estimated as the tilting train was being operated on the rail joint under the allowable velocity subjected to the track performance and the stability of the tilting-train. Since the impact on the continuous welded rail (CWR) induced by the tilting-train loading is different from the impact on the rail joint, it needs to investigate the settlement of the roadbed beneath the CWR. In this study, when the tilting-train is being operated on the CWR under the allowable velocity subjected to the track performance and the stability of the tilting-train, the settlement and bearing capacity of the roadbed beneath the CWR have been evaluated using numerical analysis and compared with those beneath the rail joint. The numerical results show that the settlements of the roadbed beneath CWR and rail joint are amount to 71.2% and 88.8% of the allowable settlement, respectively. And the stresses are amount to 10.4% and 12.1% of the allowable bearing capacity, respectively.

A Comparison of Bearing Capacity Equations for a Single Pile Considering Negative Skin Friction (부주면마찰력을 고려한 단말뚝의 허용지지력 공식 분석)

  • Lee, Sung-June;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.27-37
    • /
    • 2010
  • Downdrag force develops when a pile is driven through a soil layer which will settle more than a pile. There is no obvious criterion for application of the current pile design method considering the negative skin friction. Therefore, in this study, numerical analyses were performed to investigate the behavior of a single pile subjected to negative skin friction and their results were used to determine the applicability of the current design method. Including three different sites in Song-do area and two different cases with friction pile and end bearing pile conditions, total six cases were considered. The load-settlement relationships and the neutral points were estimated for different end bearing conditions and the allowable bearing capacity of piles with negative skin friction was investigated through parametric studies. Based on the results showed that the negative skin friction made a major influence on the settlement of a pile and its stress. However the allowable bearing capacity may not be influenced by the negative skin friction. Compared with the allowable bearing capacity obtained from the ultimate bearing capacity with the safety factor of 3, the current design method with the safety factor of 3 underestimated the allowable bearing capacities regardless of the end bearing conditions. On the other hand, the current design method with the safety factor of 2 yielded reasonable results depending on the end bearing conditions.

기초 연구 및 기술 동향

  • 기초기술위원회
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03a
    • /
    • pp.227-247
    • /
    • 2004
  • 직접기초(Shallow Foundation)란 상부구조로부터의 하중을 직접 지반에 전달시키는 형식의 기초로써 기초의 최소폭(B)과 근입깊이(D$_{f}$ )와의 비가 대체로 1.0이하인 경우나(Terzaghi, 1943), D$_{f}$ /D$\leq$1-4인 경우에도 직접기초라 정의되었다(Das, 1984). 현재, 깊은 기초보다 이용이 적지만 허용지지력과 허용침하량이 확보되는 지반이라면 깊은기초보다 훨씬 경제적인 설계를 할 수 있는 것이 직접기초이다. 이러한 직접기초의 지지력에 관한 이론적인 기본 개념은 Terzaghi(1943)에 의하여 처음 정립되었고, 그 이후 Meyerhof(1951, 1963), Hansen(1970), Vesic(1973, 1975), Chen(1975) 등에 의하여 각기 다른 지지력 산정식이 제안되었다.(중략)

  • PDF

Evaluation and Adjustment of Dynamic Pile-Driving Formulas (말뚝 지지력 산정을 위한 동역학적 공식의 정확도 분석 및 수정)

  • Chung, Choong Ki;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.23-30
    • /
    • 1985
  • Dynamic pile-driving formulas are widely used in predicting the load capacity of piles in cohesionless soils. However, the accuracy of the formulas has been questioned for a long time due to their oversimplified assumptions and empirical parameters involved in the formulas. The allowable pile capacities calculated by 6 different dynamic pile-driving formulas are compared statistically with the capacities measured in the field, in this paper, to find out the correlations between the calculated capacities and the measured values. The statistical data are then used to evaluate and to adjust the formulas to improve their accuracy. For the greatest accuracy and simplicity of use, it is recommended that the adjusted form of Gates formula be used. When the result of this recommended formula is compared with that of the existing Olson's modified formula, the former is found to be conservative by more than 10 percents.

  • PDF