네트워크 기반의 공격 및 비정상 행위를 정확히 탐지하고 판단하기 위한 기존의 탐지 모델은 공격 룰셋의 패턴매칭 기반인 Misuse Detection System을 사용하고 있다. 그러나 이 시스템의 특성상 새로운 공격의 미탐지 및 공격 오인등으로 False Positive 가 높다는 단점이 있다. 본 논문은 전체 시스템의 성능을 판정하는 False Positve 에러율을 줄여 성능을 향상하기 위해 Meachine Learning기반의 Anomaly Detection System 을 결합한 새로운 탐지 모델을 제안하고자 한다. Anomaly Detection System 은 정상행위에 대한 비교적 높은 탐지율과 새로운 공격에 대한 탐지가 용이하다. 본 논문에서는 각 시스템의 탐지모델로 Snort 와 인스턴스 기반의 알고리즘인 IBL 을 사용했으며, 결합모델의 타당성을 검증하기 위해서 각 탐지 모델의 False Positive와 False Negative 에러율을 측정하였다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2003.12a
/
pp.101-106
/
2003
인터넷 상에서의 대부분의 네트워크 공격은 공격의 목표가 되는 시스템에 단일 패킷만을 보냄으로써 공격이 이뤄질 수 없다. 그렇기 때문에 침입탐지시스템에서는 내부 네트워크로 들어오고 나가는 패킷들에 대한 일련의 순차성을 알아냄으로써 네트워크 공격을 탐지할 수 있다. 본 연구에서는 이러한 네트워크 패킷의 순차성을 이용하여 비정상행위에 대한 침입탐지 방법을 제안하였으며 또한 일부 비정상행위 탐지에서 사용하고 있는 시간을 기준으로 한 트랜잭션의 분할에서 오는 단점을 지적하고 그것을 보완하기 위하여 탐지 단위로서 사용자의 세션을 사용하였다. TCP/IP 네트워크에서의 사용자 세션 정보를 표현하기 위해서 여러 가지 정보가 사용자 행위 테이블로 표현되며 이러한 사용자 행위 테이블은 서비스 포트 별로 통계적인 정리가 가능하다. 또한 이렇게 정리된 서비스 포트별 정보에서는 확률을 기반으로 한 비정상 행위를 도출할 수 있으며, 이러한 비정상 행위도를 이용하여 침입 판단의 근거자료로 삼을 수 있음을 확인하였다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.14
no.5
/
pp.69-78
/
2004
The change of attack techniques paradigm was begun by fast extension of the latest Internet and new attack form appearing. But, Most intrusion detection systems detect only known attack type as IDS is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, the experiments to apply various techniques of anomaly detection are appearing. In this paper, we propose an behavior profiling method using Bayesian framework based on graphics from audit data and visualize behavior profile to detect/analyze anomaly behavior. We achieve simulation to translate host/network audit data into BF-XML which is behavior profile of semi-structured data type for anomaly detection and to visualize BF-XML as SVG.
APT (Advanced Persistent Threat) 공격 사례가 증가하면서, 이러한 APT 공격을 해결하고자 이상 행위 탐지 기술 관련 연구가 활발히 진행되고 있다. 최근에는 APT 공격의 탐지율을 높이기 위해서 빅데이터 기술을 활용하여 다양한 소스로부터 대규모 데이터를 수집하여 실시간 분석하는 연구들이 시도되고 있다. 본 논문은 빅데이터 기술을 활용하여 기존 시스템들의 실시간 처리 및 분석 한계를 극복하기 위한 실시간 비정상 행위 탐지 시스템에서, 파일 시스템에 수집된 오프라인 데이터 기반이 아닌 온라인 수집 데이터 기반으로 실시간 비정상 행위를 탐지하여 실시간성을 제고하고 입출력 병목 문제로 인한 처리 성능 확장성 문제를 해결하는 방법 및 시스템에 대해서 제안한다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.16
no.1
/
pp.115-122
/
2006
The most methods for intrusion detection are based on the misuse detection which accumulates hewn intrusion information and makes a decision of an attack against any behavior data. However it is very difficult to detect a new or modified aoack with only the collected patterns of attack behaviors. Therefore, if considering that the method of anomaly behavior detection actually has a high false detection rate, a new approach is required for very huge intrusion patterns based on sequence. The approach can improve a possibility for intrusion detection of known attacks as well as modified and unknown attacks in addition to the similarity measurement of intrusion patterns. This paper proposes a method which applies the multiple sequence alignments technique to the similarity matching of the sequence based intrusion patterns. It enables the statistical analysis of sequence patterns and can be implemented easily. Also, the method reduces the number of detection alerts and false detection for attacks according to the changes of a sequence size.
CPS(Cyber Physical System)에 대한 사이버 공격이 다양해지고 고도화됨에 따라 시그니쳐에 기반한 악성행위 탐지는 한계가 있어 기계학습 기반의 정상행위 학습을 통한 비정상행위 탐지 기법이 많이 연구되고 있다. 그러나 CPS 보안 연구는 보안상의 이유로 CPS 데이터가 주로 외부에 공개되지 않으며 또한 실제 비정상행위를 가동 중인 CPS에 실험하는 것이 불가능하여 개발 기법의 검증이 어려운 문제가 있다. 이를 해결하기 위해 2015년 SUTD(Singapore University of Technology and Design)의 iTrust 연구소에서 SWaT(Secure Water Treatment) 테스트베드를 구성하고 36가지의 공격을 수행한 데이터셋을 공개하였다. 이후 국 내외에서 SWaT 테스트베드 데이터를 사용하여 다양한 보안 기법을 검증한 연구결과가 발표되고 있으며 CPS 보안에 기여하고 있다. 따라서 본 논문에서는 SWaT 테스트베드 데이터 및 SWaT 테스트베드 데이터에 기반한 비정상행위 탐지 연구를 분석한 내용을 설명하고, 이를 통해 CPS 비정상행위 탐지 설계의 주요 요소를 분석하여 제시하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2006.06c
/
pp.313-315
/
2006
최근 인터넷 공격은 웹 서비스 환경에서 다양한 공격 유형들이 인터넷상에서 나타나고 있는 실정이다. 특히 인터넷 웜이나 기타 알려지지 않은 공격이 대중을 이루고 있어 기존의 정보 보호 기술로는 한계에 다다르고 있으며 이미 알려진 공격을 탐지하는 오용탐지 기술로는 적절하게 대응하기 어려워진 상태이다. 또한, 웹 서비스 이용이 확대되고 사용자 요구에 맞게 변화하면서 인터넷상의 노출된 웹 서비스는 공격자들에게 있어 주공격 대상이 되고 있다. 본 논문에서는 웹 기반의 트래픽 유형을 분석하고 각 유형에 따른 이상 징후를 파악할 수 있는 비정상 탐지 모델을 정의하여 정상 트래픽 모델과 비교함으로써 현재 트래픽의 이상 정도를 평가하고 탐지 및 규칙생성, 추가하는 HTTP 트래픽 기반의 비정상행위 탐지 시스템을 설계하고 구현하였다.
JavaScript는 AJAX와 같은 기술을 통해 정적인 HTML에 동적인 기능을 제공하며 그 쓰임새는 HTML5 등장 이후 더욱 주목받고 있는 기술이다. 그와 비례하여 JavaScript를 이용한 공격( DoS 공격, 기밀정보 누출 등 ) 또한 큰 위험으로 다가오고 있다. 이들 공격은 실제적인 흔적을 남기지 않기 때문에 JavaScript 코드 상에서 악성 행위를 판단해야 하며, 웹브라우저가 JavaScript 코드를 실행해야 실제적인 행위가 일어나기 때문에 이를 방지하기 위해선 실시간으로 악성 스크립트를 분별하고 파악할 수 있는 분석 기술이 필요하다. 본 논문은 이런 악성 스크립트를 탐지하는 분석엔진 기술을 제안한다. 이 분석 엔진은 시그니쳐 기반 탐지 기술을 이용한 정적 분석과 행위 기반 탐지 기술을 사용하는 동적 분석으로 이루어진다. 정적 분석은 JavaScript 코드에서 악성 스크립트 코드를 탐지하고 동적 분석은 JavaScript 코드의 실제 행위를 분석하여 악성 스크립트를 판별한다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.31
no.3
/
pp.365-371
/
2021
With the rapid growth in Internet users, web applications are becoming the main target of hackers. Most previous WAFs (Web Application Firewalls) target every single HTTP request packet rather than the overall behavior of the attacker, and are known to be difficult to detect new types of attacks. In this paper, we propose a web attack detection system based on user behavior using machine learning to detect attacks of unknown patterns. In order to define user behavior, we focus on features excluding areas where an attacker can camouflage as a normal user. The experimental results shows that by using the path and query information to define users' behaviors, best results for an accuracy of 99% with Decision forest.
본 논문에서는 중요 프로세스(privileged process)의 시스템 호출 순서(system call sequence)를 이용한 침입탐지 시스템을 제안한다. 기존 연구의 정상행위 기반 침입탐지 시스템은 정상행위를 모델링하여 시스템을 구성하고, 이와 비교를 통해 프로세스의 이상(anomaly) 여부를 결정한다. 이러한 방법은 모델링되지 않은 미지의 행위에 대한 적절한 판단을 행할 수 없으므로, 높은 오류율(false-positive/negative)을 보인다. 본 논문에서는 현재까지 알려진 공격에서 공통적으로 나타나는 윈도우들을 수집하여 침입예상윈도우를 구축하고, 이를 기존의 침입탐지 시스템에 부가적으로 사용하여 효과적으로 오류율(false-positive/negative)을 낮출 수 있음을 보인다. 실험 결과 제안된 방법을 통한 침입탐지는 기존의 방법에 비해 공격 탐지율은 증가하고 정상행위에 대한 오류율은 감소하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.