• Title/Summary/Keyword: 행위패턴

Search Result 381, Processing Time 0.026 seconds

(Effective Intrusion Detection Integrating Multiple Measure Models) (다중척도 모델의 결합을 이용한 효과적 인 침입탐지)

  • 한상준;조성배
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.397-406
    • /
    • 2003
  • As the information technology grows interests in the intrusion detection system (IDS), which detects unauthorized usage, misuse by a local user and modification of important data, has been raised. In the field of anomaly-based IDS several artificial intelligence techniques such as hidden Markov model (HMM), artificial neural network, statistical techniques and expert systems are used to model network rackets, system call audit data, etc. However, there are undetectable intrusion types for each measure and modeling method because each intrusion type makes anomalies at individual measure. To overcome this drawback of single-measure anomaly detector, this paper proposes a multiple-measure intrusion detection method. We measure normal behavior by systems calls, resource usage and file access events and build up profiles for normal behavior with hidden Markov model, statistical method and rule-base method, which are integrated with a rule-based approach. Experimental results with real data clearly demonstrate the effectiveness of the proposed method that has significantly low false-positive error rate against various types of intrusion.

Web Structure Mining by Extracting Hyperlinks from Web Documents and Access Logs (웹 문서와 접근로그의 하이퍼링크 추출을 통한 웹 구조 마이닝)

  • Lee, Seong-Dae;Park, Hyu-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2059-2071
    • /
    • 2007
  • If the correct structure of Web site is known, the information provider can discover users# behavior patterns and characteristics for better services, and users can find useful information easily and exactly. There may be some difficulties, however, to extract the exact structure of Web site because documents one the Web tend to be changed frequently. This paper proposes new method for extracting such Web structure automatically. The method consists of two phases. The first phase extracts the hyperlinks among Web documents, and then constructs a directed graph to represent the structure of Web site. It has limitations, however, to discover the hyperlinks in Flash and Java Applet. The second phase is to find such hidden hyperlinks by using Web access log. It fist extracts the click streams from the access log, and then extract the hidden hyperlinks by comparing with the directed graph. Several experiments have been conducted to evaluate the proposed method.

Novelty Detection on Web-server Log Dataset (웹서버 로그 데이터의 이상상태 탐지 기법)

  • Lee, Hwaseong;Kim, Ki Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1311-1319
    • /
    • 2019
  • Currently, the web environment is a commonly used area for sharing information and conducting business. It is becoming an attack point for external hacking targeting on personal information leakage or system failure. Conventional signature-based detection is used in cyber threat but signature-based detection has a limitation that it is difficult to detect the pattern when it is changed like polymorphism. In particular, injection attack is known to the most critical security risks based on web vulnerabilities and various variants are possible at any time. In this paper, we propose a novelty detection technique to detect abnormal state that deviates from the normal state on web-server log dataset(WSLD). The proposed method is a machine learning-based technique to detect a minor anomalous data that tends to be different from a large number of normal data after replacing strings in web-server log dataset with vectors using machine learning-based embedding algorithm.

Design and Theoretical Analysis of a Stepwise Intrusion Prevention Scheme (단계적 비정상 트래픽 대응 기법 설계 및 이론적 분석)

  • Ko Kwangsun;Kang Yong-hyeog;Eom Young Ik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2006
  • Recently, there is much abnormal traffic driven by several worms, such as Nimda, Code Red, SQL Stammer, and so on, making badly severe damage to networks. Meanwhile, diverse prevention schemes for defeating abnormal traffic have been studied in the academic and commercial worlds. In this paper, we present the structure of a stepwise intrusion prevention system that is designed with the feature of putting limitation on the network bandwidth of each network traffic and dropping abnormal traffic, and then compare the proposed scheme with a pre-existing scheme, which is a True/False based an anomaly prevention scheme for several worm-patterns. There are two criteria for comparison of the schemes, which are Normal Traffic Rate (NTR) and False Positive Rate (FPR). Assuming that the abnormal traffic rate of a specific network is $\beta$ during a predefined time window, it is known that the average NTR of our stepwise intrusion prevention scheme increases by the factor of (1+$\beta$)/2 than that of True/False based anomaly prevention scheme and the average FPR of our scheme decrease by the factor of (1+$\beta$)/2.

An Architecture of Access Control Model for Preventing Illegal Information Leakage by Insider (내부자의 불법적 정보 유출 차단을 위한 접근통제 모델 설계)

  • Eom, Jung-Ho;Park, Seon-Ho;Chung, Tai-M.
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.5
    • /
    • pp.59-67
    • /
    • 2010
  • In the paper, we proposed an IM-ACM(Insider Misuse-Access Control Model) for preventing illegal information leakage by insider who exploits his legal rights in the ubiquitous computing environment. The IM-ACM can monitor whether insider uses data rightly using misuse monitor add to CA-TRBAC(Context Aware-Task Role Based Access Control) which permits access authorization according to user role, context role, task and entity's security attributes. It is difficult to prevent information leakage by insider because of access to legal rights, a wealth of knowledge about the system. The IM-ACM can prevent the information flow between objects which have the different security levels using context role and security attributes and prevent an insider misuse by misuse monitor which comparing an insider actual processing behavior to an insider possible work process pattern drawing on the current defined profile of insider's process.

Classification of fun elements in metaverse content (메타버스 콘텐츠의 재미 요소 분류)

  • Lee, Jun-Suk;Rhee, Dea-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1148-1157
    • /
    • 2022
  • In 2019, COVID-19 changed many people's lives. Among them, metaverse supports non-face-to-face services through various methods, replacing daily tasks. This phenomenon was created and formed like a culture due to the prolonged COVID-19. In this paper, the fun elements used in the existing game were organized to find out the fun factors of the metaverse, and the items and contents were reclassified according to the metaverse with five experts. Classification was classified using reproducibility, sensory fun [graphic, auditory, text, manipulation, empathy, play, perspective], challenging fun [absorbedness, challenging, discovery, thrill, reward, problem-solving], imaginative fun [new story, love, freedom, agency, expectation, change], social fun[rules, competition, social behavior, status, cooperation, participation, exchange, belonging, currency transaction], interactive fun[decision making, communication sharing, hardware, empathy, nurturing, autonomy], realistic fun[sense of unity in reality, easy of learning, adaptation, intellectual problems solving, pattern recognition, sense of reality, community], and creative fun[application, creation, customizing, virtual world].

A Method of Generating Code Implementation Model for UML State Diagrams (UML 상태 다이어그램을 위한 코드 구현 모델의 생성 방법)

  • Kim, Yun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1509-1516
    • /
    • 2022
  • This paper presents a method to generate a model of the code implementation for UML state diagrams. First, it promotes the states of a state machine into objects, and then it structures the behavior model on the mechanism of a state diagram based on State design pattern. Then, it establishes the rules of generating the code implementation, and using the rules, the Java code mode is generated for the implementations of State Diagrams in Java syntax grammar. In addition, Structuring the information of the code model is necessary for generating Java code automatically. The meta information is composed of Meta-Class Model and Meta-Behavior Model, on which we could construct the automatic code generating engine for UML State Diagrams. The implementation model generation method presented in this paper could be used as a stand-alone engine, or included and integrated as a module in the UML tools.

AI Crime Prediction Modeling Based on Judgment and the 8 Principles (판결문과 8하원칙에 기반한 인공지능 범죄 예측 모델링)

  • Hye-sung Jung;Eun-bi Cho;Jeong-hyeon Chang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • In the 4th industrial revolution, the field of criminal justice is paying attention to Legaltech using artificial intelligence to provide efficient legal services. This paper attempted to create a crime prediction model that can apply Recurrent Neural Network(RNN) to increase the potential for using legal technology in the domestic criminal justice field. To this end, the crime process was divided into pre, during, and post stages based on the criminal facts described in the judgment, utilizing crime script analysis techniques. In addition, at each time point, the method and evidence of crime were classified into objects, actions, and environments based on the sentence composition elements and the 8 principles of investigation. The case summary analysis framework derived from this study can contribute to establishing situational crime prevention strategies because it is easy to identify typical patterns of specific crime methods. Furthermore, the results of this study can be used as a useful reference for research on generating crime situation prediction data based on RNN models in future follow-up studies.

Factors of Information Overload and Their Associations with News Consumption Patterns: The Roles of Tipping Point (정보과잉 요인과 뉴스 소비 패턴의 관계: 티핑 포인트의 역할을 중심으로)

  • Sun Kyong, Lee;William Howe;Kyun Soo Kim
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.1-26
    • /
    • 2023
  • A theoretical model of information overload (Jackson and Farzaneh, 2012) with its three influential components (i.e., time, technology, and social networks) was empirically tested in the context of news consumption behavior considered as a communicative outcome. Using a national sample of South Korean adults (N = 1166), data analyses identified perceived information overload and large/diverse social networks positively associated with active and passive news consumption. Findings may imply the existence of individually varying cognitive threshold (i.e., tipping point), if crossed individuals cannot process information any further. News consumers may keep searching and receiving information to verify factuality of news even when they feel overloaded.

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.