• Title/Summary/Keyword: 행렬화 이미지

Search Result 32, Processing Time 0.034 seconds

On Representations of Linear Systems and Analysis for the Meaning of Elimination Method (연립일차방정식의 다양한 표현과 소거법의 의미에 관한 연구)

  • Kim, Jin Hwan;Park, Kyo Sik
    • School Mathematics
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2015
  • Linear system is a basic subject matter of school mathematics courses. Even though elimination is a useful method to solve linear systems, its fundamental principles were not discussed pedagogically. The purpose of this study is to help the development of mathematical content knowledge on linear systems conceptions. To do this, various representations and translations among them were considered, and in particular, the basic principles for elimination method are analyzed geometrically. Rectangular representation is used to solve word problem treated in numbers of things in elementary mathematics and it is useful as a pre-stage to introduce elimination. Slopes and intercepts of lines associated linear equations are used to obtain the Cramer's formula and this solving method was showing the connection between algebraic and geometric procedures. Strategy deleting variables of linear systems by elementary operations is explored and associated with the movements of lines in the family of lines passing through a fixed point. The development of mathematical content knowledge is expected to enhance pedagogical content knowledges.

A Activation Function Selection of CNN for Inductive Motor Static Fault Diagnosis (유도전동기의 고정자 고장 진단을 위한 CNN의 활성화 함수 선정)

  • Kim, Kyoung-Min;Kim, Yong-Hyeon;Park, Guen-Ho;Lee, Buhm;Lee, Sang-Ro;Goh, Yeong-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.287-292
    • /
    • 2021
  • In this paper, we propose an efficient CNN application method by analyzing the effect of activation function on the failure diagnosis of the inductive motor stator. Generally, the main purpose of the inductive motor stator failure diagnosis is to prevent the failure by rapidly diagnosing the minute turn short. In the application of activation function, experiments show that the Sigmoid function is 23.23% more useful in accuracy of diagnosis than the ReLu function, although it is shown that ReLu has superiority in overall fixer failure in utilizing the activation function.

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

Inspection System using CIELAB Color Space for the PCB Ball Pad with OSP Surface Finish (OSP 표면처리된 PCB 볼 패드용 CIELAB 색좌표 기반 검사 시스템)

  • Lee, Han-Ju;Kim, Chang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • We demonstrated an inspection system for detecting discoloration of PCB Cu ball pad with an OSP surface finish. Though the OSP surface finish has many advantages such as eco-friendly and low cost, however, it often shows a discoloration phenomenon due to a heating process. In this study, the discoloration was analyzed with device-independent CIELAB color space. First of all, the PCB samples were inspected with standard lamps and CCD camera. The measured data was processed with Labview program for detecting discoloration of Cu ball pad. From the original PCB sample image, the localized Cu ball pad image was selected to reduce the image size by the binarization and edge detection processes and it was also converted to device-independent CIELAB color space using $3{\times}3$ conversion matrix. Both acquisition time and false acceptance rate were significantly reduced with this proposed inspection system. In addition, $L^*$ and $b^*$ values of CIELAB color space were suitable for inspection of discoloration of Cu ball pad.

개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증

  • Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.547-556
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 제계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 모드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 제안된 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계변수를 통적으로 조정하는 개선된 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산행렬을 계산한 후 그것의 고유 값에 따라 각 영상의 고유벡터를 구하므로 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후 특징 벡터를 추출한다. 따라서 여권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network (이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구)

  • Yoo, JiHoon;Min, Byeongjun;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2021
  • As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.

Counterfeit Money Detection Algorithm based on Morphological Features of Color Printed Images and Supervised Learning Model Classifier (컬러 프린터 영상의 모폴로지 특징과 지도 학습 모델 분류기를 활용한 위변조 지폐 판별 알고리즘)

  • Woo, Qui-Hee;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.12
    • /
    • pp.889-898
    • /
    • 2013
  • Due to the popularization of high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy to make high-quality counterfeit money. However, the probability of detecting counterfeit money to the general public is extremely low and the detection device is expensive. In this paper, a counterfeit money detection algorithm using a general purpose scanner and computer system is proposed. First, the printing features of color printers are calculated using morphological operations and gray-level co-occurrence matrix. Then, these features are used to train a support vector machine classifier. This trained classifier is applied for identifying either original or counterfeit money. In the experiment, we measured the detection rate between the original and counterfeit money. Also, the printing source was identified. The proposed algorithm was compared with the algorithm using wiener filter to identify color printing source. The accuracy for identifying counterfeit money was 91.92%. The accuracy for identifying the printing source was over 94.5%. The results support that the proposed algorithm performs better than previous researches.

A New Bias Scheduling Method for Improving Both Classification Performance and Precision on the Classification and Regression Problems (분류 및 회귀문제에서의 분류 성능과 정확도를 동시에 향상시키기 위한 새로운 바이어스 스케줄링 방법)

  • Kim Eun-Mi;Park Seong-Mi;Kim Kwang-Hee;Lee Bae-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1021-1028
    • /
    • 2005
  • The general solution for classification and regression problems can be found by matching and modifying matrices with the information in real world and then these matrices are teaming in neural networks. This paper treats primary space as a real world, and dual space that Primary space matches matrices using kernel. In practical study, there are two kinds of problems, complete system which can get an answer using inverse matrix and ill-posed system or singular system which cannot get an answer directly from inverse of the given matrix. Further more the problems are often given by the latter condition; therefore, it is necessary to find regularization parameter to change ill-posed or singular problems into complete system. This paper compares each performance under both classification and regression problems among GCV, L-Curve, which are well known for getting regularization parameter, and kernel methods. Both GCV and L-Curve have excellent performance to get regularization parameters, and the performances are similar although they show little bit different results from the different condition of problems. However, these methods are two-step solution because both have to calculate the regularization parameters to solve given problems, and then those problems can be applied to other solving methods. Compared with UV and L-Curve, kernel methods are one-step solution which is simultaneously teaming a regularization parameter within the teaming process of pattern weights. This paper also suggests dynamic momentum which is leaning under the limited proportional condition between learning epoch and the performance of given problems to increase performance and precision for regularization. Finally, this paper shows the results that suggested solution can get better or equivalent results compared with GCV and L-Curve through the experiments using Iris data which are used to consider standard data in classification, Gaussian data which are typical data for singular system, and Shaw data which is an one-dimension image restoration problems.

Integrating Color, Texture and Edge Features for Content-Based Image Retrieval (내용기반 이미지 검색을 위한 색상, 텍스쳐, 에지 기능의 통합)

  • Ma Ming;Park Dong-Won
    • Science of Emotion and Sensibility
    • /
    • v.7 no.4
    • /
    • pp.57-65
    • /
    • 2004
  • In this paper, we present a hybrid approach which incorporates color, texture and shape in content-based image retrieval. Colors in each image are clustered into a small number of representative colors. The feature descriptor consists of the representative colors and their percentages in the image. A similarity measure similar to the cumulative color histogram distance measure is defined for this descriptor. The co-occurrence matrix as a statistical method is used for texture analysis. An optimal set of five statistical functions are extracted from the co-occurrence matrix of each image, in order to render the feature vector for eachimage maximally informative. The edge information captured within edge histograms is extracted after a pre-processing phase that performs color transformation, quantization, and filtering. The features where thus extracted and stored within feature vectors and were later compared with an intersection-based method. The content-based retrieval system is tested to be effective in terms of retrieval and scalability through experimental results and precision-recall analysis.

  • PDF

Camera and LiDAR Sensor Fusion for Improving Object Detection (카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion)

  • Lee, Jongseo;Kim, Mangyu;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.580-591
    • /
    • 2019
  • This paper focuses on to improving object detection performance using the camera and LiDAR on autonomous vehicle platforms by fusing detected objects from individual sensors through a late fusion approach. In the case of object detection using camera sensor, YOLOv3 model was employed as a one-stage detection process. Furthermore, the distance estimation of the detected objects is based on the formulations of Perspective matrix. On the other hand, the object detection using LiDAR is based on K-means clustering method. The camera and LiDAR calibration was carried out by PnP-Ransac in order to calculate the rotation and translation matrix between two sensors. For Sensor fusion, intersection over union(IoU) on the image plane with respective to the distance and angle on world coordinate were estimated. Additionally, all the three attributes i.e; IoU, distance and angle were fused using logistic regression. The performance evaluation in the sensor fusion scenario has shown an effective 5% improvement in object detection performance compared to the usage of single sensor.