• Title/Summary/Keyword: 행렬계산

Search Result 901, Processing Time 0.032 seconds

Fiber Finite Element Mixed Method for Nonlinear Analysis of Steel-Concrete Composite Structures (강-콘크리트 합성구조물의 비선형해석을 위한 화이버 유한요소 혼합법)

  • Park, Jung-Woong;Kim, Seung-Eock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.789-798
    • /
    • 2008
  • The stiffness method provides a framework to calculate the structural deformations directly from solving the equilibrium state. However, to use the displacement shape functions leads to approximate estimation of stiffness matrix and resisting forces, and accordingly results in a low accuracy. The conventional flexibility method uses the relation between sectional forces and nodal forces in which the equilibrium is always satisfied over all sections along the element. However, the determination of the element resisting forces is not so straightforward. In this study, a new fiber finite element mixed method has been developed for nonlinear anaysis of steel-concrete composite structures in the context of a standard finite element analysis program. The proposed method applies the Newton method based on the load control and uses the incremental secant stiffness method which is computationally efficient and stable. Also, the method is employed to analyze the steel-concrete composite structures, and the analysis results are compared with those obtained by ABAQUS. The comparison shows that the proposed method consistently well predicts the nonlinear behavior of the composite structures, and gives good efficiency.

A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks (점성균열 모델을 위한 국부단위분할이 적용된 무요소법)

  • Zi, Goangseup;Jung, Jin-kyu;Kim, Byeong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.861-872
    • /
    • 2006
  • The element free Galerkin method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum. The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by a branch enrichment function which does not have the LEFM stress singularity. The discrete equations are obtained directly from the standard Galerkin method since the enrichment is only for the displacement field, which satisfies the local partition of unity. Because only particles whose domains of influence are influenced by a crack are enriched, the system matrix is still sparse so that the increase of the computational cost is minimized. The condition for crack growth in dynamic problems is obtained from the material instability; when the acoustic tensor loses the positive definiteness, a cohesive crack is inserted to the point so as to change the continuum to a discontiuum. The crack speed is naturally obtained from the criterion. It is found that this method is more accurate and converges faster than the classical meshless methods which are based on the visibility concept. In this paper, several well-known static and dynamic problems were solved to verify the method.

Detection of Cold Water Mass along the East Coast of Korea Using Satellite Sea Surface Temperature Products (인공위성 해수면온도 자료를 이용한 동해 연안 냉수대 탐지 알고리즘 개발)

  • Won-Jun Choi;Chan-Su Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1235-1243
    • /
    • 2023
  • This study proposes the detection algorithm for the cold water mass (CWM) along the eastern coast of the Korean Peninsula using sea surface temperature (SST) data provided by the Korea Institute of Ocean Science and Technology (KIOST). Considering the occurrence and distribution of the CWM, the eastern coast of the Korean Peninsula is classified into 3 regions("Goseong-Uljin", "Samcheok-Guryongpo", "Pohang-Gijang"), and the K-means clustering is first applied to SST field of each region. Three groups, K-means clusters are used to determine CWM through applying a double threshold filter predetermined using the standard deviation and the difference of average SST for the 3 groups. The estimated sea area is judged by the CWM if the standard deviation in the sea area is 0.6℃ or higher and the average water temperature difference is 2℃ or higher. As a result of the CWM detection in 2022, the number of CWM occurrences in "Pohang-Gijang" was the most frequent on 77 days and performance indicators of the confusion matrix were calculated for quantitative evaluation. The accuracy of the three regions was 0.83 or higher, and the F1 score recorded a maximum of 0.95 in "Pohang-Gijang". The detection algorithm proposed in this study has been applied to the KIOST SST system providing a CWM map by email.

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity (주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류)

  • 진계환;조현숙;이태수;구용숙
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.211-217
    • /
    • 2003
  • The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8${\times}$8 array (spacing 200 $\mu$m, electrode diameter 30 $\mu$m) in the center of the plate. The MEA 60 system was used for the recording of retinal ganglion cell activity. The action potentials of each channel were sorted by off­line analysis tool. Spikes were detected with a threshold criterion and sorted according to their principal component composition. The first (PC1) and second principal component values (PC2) were calculated using all the waveforms of the each channel and all n time points in the waveform, where several clusters could be separated clearly in two dimension. We verified that PCA-based waveform detection was effective as an initial approach for spike sorting method.

  • PDF

Theoretical Analysis of FBARs Filters with Bragg Reflector Layers and Membrane Layer (브래그 반사층 구조와 멤브레인 구조의 체적 탄성파 공진기 필터의 이론적 분석)

  • Jo, Mun-Gi;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.41-54
    • /
    • 2002
  • In this study, we have analyzed the effects of the membrane layer and the bragg reflector layers on the resonance characteristics through comparing the characteristics of the membrane type FBAR (Film Bulk Acoustic Wave Resonator) and the one type bragg reflector layers with those of the ideal FBAR with top and bottom electrode contacting air by using equivalent circuit technique. It is assumed that ZnO is used for piezoelectric film, $SiO_2$ are used for membrane layer and low acoustic impedance layer, W are used for the high acoustic reflector layer and Al is used for the electrode. Each layer is considered to have a acoustic propagation loss. ABCD parameters are picked out and input impedance is calculated by converting 1-port equivalent circuit to simplified equivalent circuit that ABCD parameters are picked out possible. From the variation of resonance frequency due to the change of thickness of electrode layers, reflector layers and membrane layer it is confirmed that membrane layer and the reflector layer just under the electrode have the greatest effect on the variation of resonance frequency. From the variation of resonance properties, K and electrical Q with the number of layers, K is not much affected by the number of layers but electrical Q increases with the number of layers when the number of layers is less than seven. The electrical Q is saturated when the number of layers is large than six. The electrical Q is dependent of mechanical Q of reflector layers and membrane layer. Both ladder filter and SCF (Stacked Crystal Filters) show higher insertion loss and out-of-band rejection with the increase of the number of resonators. The insertion loss decreases with the increase of the number of reflector layers but the bandwidth is not much affected by the number of reflector layers. Ladder Filter and SCF with membrane layer show the spurious response due to spurious resonance properties. Ladder filter shows better skirt-selectivity characteristics in bandwidth but SCF shows better characteristics in insertion loss.

A METHOD OF CAPABILITY EVALUATION FOR KOREAN PADDY SOILS -Part I. Fertility evaluation and fertility classification (한국답토양의 생산력평가방법에 관한 연구 -1 보(報). 비옥도평가(肥沃度評價) 및 비옥도분류(肥沃度分類))

  • Hong, Ki-Chang;Maeng, Do-Won;Kazutake, Kyuma;Hisao, Furukawa;Suh, Yoon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 1979
  • The fertility which is the combined factor is one of the important capability determiants of paddy soils. In this study, we aimed at attaining a quantitative evaluation of soil fertility and further establishing an objective fertility classification on the basis of the fertility evaluation. The samples used in this series studies were collected from Korean paddy field. They include deltas, flood plains, coastal plains, valley plains, fans and low terraces. On the basis of correlation analysis, factor analysis was applied to a set of 15 variables. As a result of factor analysis, five mutually independent and clearly definable fertility component factors were extracted from the 15 variables for the whole 90 surface soil samples. The fertility status of each sample soil could be objectively designated by the score of the five factors. As a means of summarizing the information obtained, taxonomic distances between all pairs of the samples were computed from these five factor scores further to be subjected to numerical taxonomy. Seven fertility groups were formulated, each of which was characterized by one or more of the fertility components. As this fertility classification was based on the present state of soil properties, it would be useful in pointing to the proper direction of further fertility amelioration and improvement for each group to enhance potential productivity of Korean paddy fields.

  • PDF

Clinical Usefulness of PET-MRI in Lymph Node Metastasis Evaluation of Head and Neck Cancer (두경부암 림프절 전이 평가에서 PET-MRI의 임상적 유용성)

  • Kim, Jung-Soo;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Purpose: As PET-MRI which has excellent soft tissue contrast is developed as integration system, many researches about clinical application are being conducted by comparing with existing display equipments. Because PET-MRI is actively used for head and neck cancer diagnosis in our hospital, lymph node metastasis before the patient's surgery was diagnosed and clinical usefulness of head and neck cancer PET-MRI scan was evaluated using pathological opinions and idiopathy surrounding tissue metastasis evaluation method. Materials and Methods: Targeting 100 head and neck cancer patients in SNUH from January to August in 2013. $^{18}F-FDG$ (5.18 MBq/kg) was intravenous injected and after 60 min of rest, torso (body TIM coil, Vibe-Dixon) and dedication (head-neck TIM coil, UTE, Dotarem injection) scans were conducted using $Bio-graph^{TM}$ mMR 3T (SIEMENS, Munich). Data were reorganized using iterative reconstruction and lymph node metastasis was read with Syngo.Via workstation. Subsequently, pathological observations and diagnosis before-and-after surgery were examined with integrated medical information system (EMR, best-care) in SNUH. Patient's diagnostic information was entered in each category of $2{\times}2$ decision matrix and was classified into true positive (TP), true negative (TN), false positive (FP) and false negative (FN). Based on these classified test results, sensitivity, specificity, accuracy, false negative and false positive rate were calculated. Results: In PET-MRI scan results of head and neck cancer patients, positive and negative cases of lymph node metastasis were 49 and 51 cases respectively and positive and negative lymph node metastasis through before-and-after surgery pathological results were 46 and 54 cases respectively. In both tests, TP which received positive lymph node metastasis were analyzed as 34 cases, FP which received positive lymph node metastasis in PET-MRI scan but received negative lymph node metastasis in pathological test were 4 cases, FN which received negative lymph node metastasis but received positive lymph node metastasis in pathological test was 1 case, and TN which received negative lymph node metastasis in both two tests were 50 cases. Based on these data, sensitivity in PET-MRI scan of head and neck cancer patient was identified to be 97.8%, specificity was 92.5%, accuracy was 95%, FN rate was 2.1% and FP rate was 7.00% respectively. Conclusion: PET-MRI which can apply the acquired functional information using high tissue contrast and various sequences was considered to be useful in determining the weapons before-and-after surgery in head and neck cancer diagnosis or in the evaluation of recurrence and remote detection of metastasis and uncertain idiopathy cervical lymph node metastasis. Additionally, clinical usefulness of PET-MRI through pathological test and integrated diagnosis and follow-up scan was considered to be sufficient as a standard diagnosis scan of head and neck cancer, and additional researches about the development of optimum MR sequence and clinical application are required.

  • PDF

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.