• Title/Summary/Keyword: 행동 빅 데이터

Search Result 99, Processing Time 0.026 seconds

Group Behavior Pattern and Activity Analysis System Using Big Data Based Acceleration Signals (빅데이터 기반의 가속도 신호를 이용한 집단 행동패턴 및 활동성 분석 시스템)

  • Kim, Tae Woong
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The data analysis system using Big-data is worthy to be used in various fields such as politics, traffic, natural disaster, shopping, customer management, medical care, and weather information. Particularly, the analysis of the momentum of an individual using an acceleration signal collected from a wearable device has already been widely used. However, since the data used in such a system stores only the data necessary for measuring the individual activity, it does not provide various analysis results other than the exercise amount of the individual. In this paper, I propose a system that analyzes collective behavior pattern and activity based on the acceleration signal that can be collected from personal smartphones for 24 hours a day and stored in big data. I also propose a system that sends acceleration signals and receives analysis results using standard messaging to use on various smart devices.

Private information protection method and countermeasures in Big-data environment: Survey (빅데이터 환경에서 개인민감정보 보호 방안 및 대응책: 서베이)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.55-59
    • /
    • 2018
  • Big-data, a revolutionary technology in the era of the 4th Industrial Revolution, provides services in various fields such as health, public sector, distribution, marketing, manufacturing, etc. It is very useful technology for marketing analysis and future design through accurate and quick data analysis. It is very likely to develop further. However, the biggest problem when using Big-data is privacy and privacy. When various data are analyzed using Big-data, the tendency of each user can be analyzed, and this information may be sensitive information of an individual and may invade privacy of an individual. Therefore, in this paper, we investigate the necessary measures for Personal private information infringement that may occur when using Personal private information in Big-data environment, and propose necessary Personal private information protection technologies to contribute to protection of Personal private information and privacy.

A Study on Senior Behavioral Analysis and Care System Using Big Data (빅데이터를 활용한 시니어 행동분석 돌봄 시스템 연구)

  • Jang, Jae-Youl;Choi, Jin-Il;Uh, Je-Sun;Choi, Chul-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.973-980
    • /
    • 2020
  • Various applied solutions utilizing the technology of the 4th Industrial Revolution are being applied to the health and welfare sector. In the proposed paper, the senior care system solution based on big data is designed. The principles of operation of the proposed system are collecting senior behavioral analyses through API information of smart devices, and sending a primary notification to the relevant senior in cases where a senior reacts differently from the existing standards. A system is proposed to prevent dangerous situations by providing information to peer seniors, family members, and the emergency center in cases where there is no response.

Big Data using Artificial Intelligence CNN on Unstructured Financial Data (비정형 금융 데이터에 관한 인공지능 CNN 활용 빅데이터 연구)

  • Ko, Young-Bong;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.232-234
    • /
    • 2022
  • Big data is widely used in customer relationship management, relationship marketing, financial business improvement, credit information and risk management. Moreover, as non-face-to-face financial transactions have become more active recently due to the COVID-19 virus, the use of financial big data is more demanded in terms of relationships with customers. In terms of customer relationship, financial big data has arrived at a time that requires an emotional rather than a technical approach. In relational marketing, it was necessary to emphasize the emotional aspect rather than the cognitive, rational, and rational aspects. Existing traditional financial data was collected and utilized through text-type customer transaction data, corporate financial information, and questionnaires. In this study, the customer's emotional image data, that is, atypical data based on the customer's cultural and leisure activities, is acquired through SNS and the customer's activity image is analyzed with an artificial intelligence CNN algorithm. Activity analysis is again applied to the annotated AI, and the AI big data model is designed to analyze the behavior model shown in the annotation.

  • PDF

A Study on Social Issues and Consumption Behavior Using Big Data (빅데이터를 활용한 사회적 이슈와 소비행동 연구)

  • Baek, Seung-Heon;Kim, Gi-Tak
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.377-389
    • /
    • 2019
  • This study conducted social network big data analysis to investigate consumer's perception of Japanese sporting goods related to Japanese boycott and to extract problems and variables by recognition. Social network big data analysis was conducted in two areas, "Japanese boycott" and "Japanese sporting goods". Months of data were collected and investigated. If you specify the research method, you will identify the issues of the times - keyword setting using social network analysis - clustering using CONCOR analysis using TEXTOM and Ucinet 6 programs - variable selection through expert meetings - questionnaire preparation and answering - and validity of questionnaire Reliability Verification - It consists of hypothesis verification using the structural model equation. Based on the results of using the big data of social networks, four variables of relevant characteristics, nationality, attitude, and consumption behavior were extracted. A total of 30 questions and 292 questionnaires were used for final hypothesis verification. As a result of the analysis, first, the boycott-related characteristics showed a positive relationship with nationality. Specifically, all of the characteristics related to boycotts (necessary boycott, sense of boycott, and perceived boycott benefits were positively related to nationality. In addition, nationality was found to have a positive relationship with consumption behavior.

A Study on Abnormal Behavior Analysis and Pattern Prediction using Bigdata (빅데이터기반 이상행동 분석 및 패턴예측 모델 연구)

  • Jung, Yu-Jin;Yoon, Young-Ik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.724-726
    • /
    • 2014
  • 본 논문에서는 범죄 발생 전 빠른 상황판단과 효과적인 의사결정을 위한 방법으로 이상 행동을 분류, 분석하여 이상행동 패턴을 발견하고 이에 따라 발생 전 상황을 예상할 수 있는 예측하는 모델을 제시하였다. 이러한 행동분석과 패턴예측 모델은 CCTV로 부터 수집된 데이터를 단계별 DB를 통해 빠르고 정확한 분석할 수 있고, 과거에 축적 및 분석된 데이터를 유사한 상황에 직면했을 때 사전에 예방하기 위한 유용한 도구로 활용이 가능할 것이다.

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

Analysis study of movement patterns using BigData analysis technology (BigData 분석 기법을 활용한 이동 패턴 분석 연구)

  • Yun, Jun-Soo;Kang, Hee-Soo;Moon, Il-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1073-1079
    • /
    • 2014
  • One of the techniques that are most in the spotlight today, it can be said that Big data. With Big Data, technologies already prevalent in our lives is GPS. Based on the GPS data and Big Data, in this paper, we try to analyze the pattern and path of movement of a particular target. Specific target collects the GPS data by classifying weather and grade and sex of college students, and day of the week in college students of one university. The collected data is analyzed such as movement path, movement time, pattern of repetitive behavior. And visualize it. The analysis method will be classified according to the purpose of data. By identifying relationships with other data results obtained. Based on the present study, the future, we will derive the results of the data more reliable. For this purpose, a wide range of information to be collected will additionally. Research will be developed add to such as Season, time, blood type, occupation data.

Design and Implementation of the Farm-level Data Acquisition System for the Behavior Analysis of Livestocks (가축의 행동 분석을 위한 농장 수준의 데이터 수집 시스템 설계와 구현)

  • Park, Gi-Cheol;Han, Su-Young
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • Livestock behavioral analysis is a factor that has a great influence on livestock health management and agricultural productivity increase. However, most digital devices introduced for behavioral analysis of livestock do not provide raw data and also provide limited analysis results. Such a closed system makes it more difficult to integrate data and build big data, which are essential for the introduction of advanced IT technologies. Therefore, it is necessary to supply farm-scale data collection devices that can be easily used at low cost. This study presents a data collection system for analyzing the behavior of livestock. The system consists of a number of miniature computing units that operate wirelessly, and collects livestock body temperature and acceleration data, location information, and livestock environment data. In addition, this study presents an algorithm for estimating the behavior of livestock based on the collected acceleration data. For the experiment, a system was built in a Korean cattle farm in Icheon, Gyeonggi-do, and data were collected for 20 Korean cattle, and based on this, the empirical and analysis results were presented.

Proactive safety support system for vulnerable pedestrians using Deep learning method (보행취약자 보행안전을 위한 딥러닝 응용 기법)

  • Song, Hyok;Ko, Min-Soo;Yoo, Jisang;Choi, Byeongho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.107-108
    • /
    • 2017
  • 횡단보도 인근에서는 보행취약자의 사고가 끊이지 않고 있으며 사고예방 및 사고의 절감을 위하여 선제적안 안전시스템의 개발이 요구되고 있다. 선제적 안전시스템의 개발을 위하여 빅데이터를 이용한 안전 데이터 도출, 영상분석을 이용한 보행자 행동특성 모니터링 시스템의 개발 및 사고감소를 위한 안전 시스템 개발이 진행되고 있다. 보행취약자 위험상황 판단에 대한 정의를 빅데이터 분석을 통해 도출하고 횡단보도 주변 안전 시스템의 개발을 기존 시스템에 적용 및 새로운 시스템을 개발하며 이에 적합한 딥러닝 영상분석 시스템을 개발하였다. 본 논문에서는 딥러닝 모델을 이용하여 객체의 검출, 분석을 수행하는 객체 검출부, 객체의 포즈와 행동을 보여주는 영상 분석부로 구성되어 있으며 기존 모델을 응용하여 최적화한 모델을 적용하였다. 딥러닝 모델의 구동은 리눅스 서버에서 운용되고 있으며 딥러닝 모델 구동을 위한 여러 툴을 적용하였다. 본 연구를 통하여 보행취약자의 검출, 추적, 보행취약자의 포즈 및 위험상황을 인식하고 안전시스템과 연계할 수 있도록 구성하였다.

  • PDF