베이지안 네트워크는 변수들간의 원인-결과 관계를 확률적으로 모델링하기 위한 도구로서 소프트웨어 사용자의 목적을 추론하기 위해 널리 이용된다. 행동기반 로봇 설계는 반응적(reactive) 행동 모듈을 효과적으로 결합하여 복잡한 행동을 생성하기 위한 접근 방법이다. 행동의 결합은 로봇의 목표, 외부환경, 행동들 사이의 관계를 종합적으로 고려하여 동적으로 이루어진다. 그러나 현재의 결합 모델은 사전에 설계자에 의해 구조가 결정되는 고정적인 형태이기 때문에 환경의 변화에 맞게 목표를 변화시키지 못한다. 본 연구에서는 베이지안 네트워크를 이용하여 현재 상황에 가장 적합한 로봇의 목표를 설정하여 유연한 행동선택을 유도한다. Khepera 이동로봇 시뮬레이터를 이용하여 실험을 수행해 본 결과 베이지안 네트워크를 적용한 모델이 상황에 적합하게 목적을 선택하여 문제를 해결하는 것을 알 수 있었다.
방대한 양의 웹 정보를 적절히 가공하여 사용자가 원하는 서비스를 생성하기란 쉽지 않다. 웹서비스는 사용자가 원하는 적절한 정보를 표준화된 인터페이스를 통해 처리할 수 있는 기능을 제공하고 결합을 통해 보다 복잡한 서비스를 생성할 수 있도록 해준다. 오프라인에서 물품을 사기 위해 상점에 들어갈 때 점원의 도움을 받는 것처럼 웹서비스도 상황에 맞춰 유연하게 제공되어야 한다 그러나 일반 웹서비스 생성은 사용자의 정보를 능동적으로 판단하지 않고 정적인 규칙에 의존한 결합이 주를 이루고 있다 본 논문의 서비스 에이전트는 행동 네트워크를 사용하여 사용자에게 적절한 서비스를 제공한다. 행동 네트워크는 외부환경과 내부목표를 바탕으로 각각의 행동들이 서로 연결 관계를 가지고 있다. 각각의 행동의 선택은 다른 행동과 외부환경에 영향을 주기 때문에 동적으로 사용자의 환경과 입력이 변하여도 적절히 대처하며 서비스 선택을 할 수 있다. 행동 네트워크를 바탕으로 동적 서비스 생성 시스템을 만들었고, 이를 이용하여 Amazon 도메인에서 능동적인 서비스 제공이 가능함을 보였다.
분산 인공지능 분야에서는 여러 개의 기본 객체들이 상호작용을 통해 원하는 작업을 수행하는데, 그 한 예로 행동기반 이동로봇 제어 시스템을 들 수 있다. 이것은 여러 개의 기본 행동 모듈을 개발한 후, 적절한 조정방법을 사용하여 어려운 문제를 해결하며, 행동 네트워크는 행동 모듈들간의 협력과 억제를 모델링 하여 주어진 작업을 달성하도록 행동들의 실행순서를 조정하는 방법중의 하나이다. 정적으로 행동을 선택하는 규칙기반 결합 방법과는 달리 목표에 기반 하여 행동 네트워크는 다양한 행동들의 실행순서를 동적으로 선택한다는 장점이 있다. 본 논문에서는 진화 방식으로 설계된 기본 행동 모듈을 행동 네트워크와 규칙기반 방법으로 선택하는 실험을 수행하며, 그 결과 행동 네트워크가 변화하는 환경에서도 좋은 성능을 보인다는 사실을 확인할 수 있었다.
본 논문에서는 실제환경에서와 같이 예측할 수 없는 상황에서 에이전트의 인지와 자동 행동 생성 방법을 제안한다. 전통적인 에이전트의 지능제어 방법은 환경에 대해 알고 있는 정보를 이용한다는 제약 때문에 다양하고 복잡한 환경에 적응할 수 없었다. 최근, 미리 알려지지 않은 환경에서 자동으로 행동을 생성할 수 있는 센서와 행동을 연결하는 행동 기반의 방법과 추론, 학습 및 계획 기능의 부여를 위한 하이브리드 방법이 연구되고 있다. 본 논문에서는 다양한 환경조건으로 움직이는 장애물을 인지하고 피할 수 있는 행동을 생성하기 위해 행동 네트워크에 Bayesian 네트워크를 결합한 방법을 제안한다. 행동 네트워크는 입력된 센서 정보와 미리 정의된 목적 정보를 가지고 다음에 수행할 가장 높은 우선순위의 행동을 선택한다. 그리고 Bayesian 네트워크는 센서 정보들로부터 상황을 미리 추론하고 이 확률 값을 행동 네트워크의 가중치로 주어 행동 선택을 조정하도록 한다. 로봇 시뮬레이터를 이용한 실험을 통해 제안한 행동 네트워크와 Bayesian 네트워크의 결합 방법으로 움직이는 장애물을 피하고 목적지를 찾아가는 것을 확인할 수 있었다.
자율이동로봇의 센서-모터 제어기를 구축하는데 있어 로봇의 기계적인 부분과 제어기 부분을 조화시키는 것이나 외부환경과 로봇의 상호작용을 처리하는 것 등이 가장 큰 문제점이다. 이러한 문제점들을 해결하기 위해서 진화적 접근방법이 많이 사용되고 있다. 이전 연구에서는 이러한 연구선상에서 셀룰라 오토마타 기반 신경망인 CAM-Brain을 이동로봇 제어기로 진화시켰다. 그러나, 하나의 모듈로 이루어진 제어기로는 복잡한 행동을 하도록 만들기 어렵기 때문에 본 논문에서는 하위 수준의 간단한 행동을 하도록 진화된 모듈들을 결합하여 보다 상위 수준의 복잡한 행동을 하도록 하는 다중 모듈 결합방법을 제안한다. 실험결과, 간단한 행동들을 하도록 진화된 CAM-Brain 모듈들을 규칙기반 방법으로 결합하여 주어진 좀더 환경에 적응할 수 있는 제어기를 얻을 수 있었다.
본 연구는 소비자가 제품 및 서비스 불만족으로 인해 발생하는 감정적 반응 (Anger)이 소비자 불평행동에 미치는 영향을 행동이론 중에 하나인 계획행동이론(Theory of Planned Behavior)과 결합하여 살펴보고자 한다. 본 연구는 삼성 핸드폰 애니콜 사용자들이 개설한 '소비자의 힘'이란 웹사이트에서 소비자들의 적극적인 활동을 예측하기 위해서 기존 문헌연구를 통해 감정적인 부분과 인지적인 요인들의 결합을 통한 모델을 제시하였다. 제시된 모델을 검증하기 위해서 "소비자의 힘" 웹 사이트 회원들을 대상으로 실증적 분석을 위한 온라인 설문을 실시하였다. 온라인 설문은 감정적 반응인 분노와 계획행동이론의 변인들(주관적 규범, 태도, 행동의도, 행위)과 함께 불평행동 하나인 서명운동의 유무를 묻는 문항들로 구성되었다. 수집된 자료를 분석한 결과, 제품 서비스에 대한 감정적 반응(Anger)과 행동이론의 결합이 소비자 행동을 보다 잘 예측하는 것으로 판명되었다. 그리고 불평행동의 적극적 참여 의도는 서명참여 유무를 유의미하게 설명하였다.
본 논문에서는 온라인 뉴스 기사를 여과하여 사용자에게 관련있는 뉴스기사만을 선별적으로 여과하여 보여주는 정보여과 에이전트를 설계 및 구현하였다. 정보여과의 핵심이라고 할 수 있는 정확한 사용자 프로파일 구축과 정보에 대한 사용자의 적합성 반응인 명시적 피드백과 암시적 피드백을 모두 결합한 피드백을 사용하여 사용자 프로파일을 좀 더 정교하게 구축하는 방법을 기술하였다. 실험을 통하여 사용자의 결합된 적합성 피드백 행동에 기반한 정보여과 에이전트의 성능이 단일의 피드백만을 사용했을 때보다 더 좋은 정확성과 적응성을 지니고 있음을 보여 주었다.
에이전트의 '물체 따라가기'는 전통적으로 자동운전이나 가이드 등의 다양한 서비스를 제공할 수 있는 기본적인 기능이다. 여러 가지 물체가 있는 환경에서 '물체 따라가기'를 하기 위해서는 목적하는 대상이 어디에 있는지 찾을 수 있어야 하며, 실제 환경에는 사람이나 차와 같이 움직이는 물체들이 존재하기 때문에 다른 물체들을 피할 수 있어야 한다. 그런데 에이전트의 최적화된 피하기 행동은 장애물의 모양과 크기에 따라 다르게 생성될 수 있다. 본 논문에서는 다양한 모양과 크기의 장애물이 있는 환경에서 최적의 피하기 행동을 생성하면서 물체를 추적하기 위해 반응형 에이전트의 행동선택을 강화학습 한다. 여기에서 정확하게 상태를 인식하기 위하여 상태를 추론하고 목표물과 일정거리를 유지하기 위해 베이지안 추론을 이용한다 베이지안 추론은 센서정보를 이용해 확률 테이블을 생성하고 가장 유력한 상황을 추론하는데 적합한 방법이고, 강화학습은 실시간으로 장애물 종류에 따른 상태에서 최적화된 행동을 생성하도록 평가함수를 제공하기 때문에 베이지안 추론과 강화학습의 결합모델로 장애물에 따른 최적의 피하기 행동을 생성할 수 있다. Webot을 이용한 시뮬레이션을 통하여 다양한 물체가 존재하는 환경에서 목적하는 대상을 따라가면서 이종의 움직이는 장애물을 최적화된 방법으로 피할 수 있음을 확인하였다.
이동로봇을 위한 제어기를 개발하려는 폭넓은 연구가 진행되어 왔다. 특히, 몇몇 연구가들은 유전자 알고리즘이나 유전자 프로그래밍과 같은 진화 알고리즘을 사용하여 장애물 피하기, 포식자 피하기, 이동하는 먹이 잡기 등의 기능을 수행하는 이동로봇 제어기를 개발하였다. 이러한 연구 선상에서, 우리는 이동로봇을 제어하기 위해 셀룰라 오토마타 상에서 진화된 CAM-Brain을 적용하는 방법을 보여왔다. 그러나, 이러한 접근방법은 로봇이 복잡한 환경에서 적합한 행동을 수행하도록 만드는데 한계가 있었다. 본 논문에서는, Maes의 행동선택 방법론을 이용하여 간단한 행동을 하도록 진화된 모듈들을 결합함으로써 이러한 문제를 해결하려고 한다. 실험 결과는 이러한 접근방법이 복잡한 환경을 위한 신경망 제어기를 개발하는데 가능성이 있음을 보여주었다.
본 논문은 반려동물의 행동 분석을 개선하기 위해 IMU 센서 데이터와 딥러닝 모델을 결합하는 방법을 제안한다. 이를 위해 IMU 웨어러블 디바이스를 통해 행동 데이터를 수집한다. 수집된 데이터는 총 6개의 클래스로 앉다. 서다. 엎드리다, 먹다, 킁킁대다, 걷다로 분류된다. 분류된 데이터는 클래스별로 데이터 증강 및 전처리 단계를 거친다. 행동 분류를 위해 ResNet과 LSTM을 결합한 하이브리드 모델을 사용하여 학습을 진행했다. ResNet-LSTM은 Accuracy 97%, F1-score 96%로 높은 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.