• Title/Summary/Keyword: 햅틱보조설계

Search Result 8, Processing Time 0.024 seconds

Human-Oriented Design of Backrest of Office Chair Using Haptic-aided Design and Lumber Angle Prediction (햅틱보조설계 기법과 요추각도의 예측을 이용한 의자등판의 인간중심적인 설계)

  • Lee, Sang-Duck;Lee, Hae-A;Song, Jae-Bok;Chae, Soo-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1581-1586
    • /
    • 2010
  • Haptic-aided design (HAD) involves the use of a haptic simulator in place of physical prototypes in the design and development of products with which human beings interact physically. The development time and cost can be significantly reduced by adopting this HAD scheme. Although both physical and emotional factors are equally important, only the emotional factors were taken into consideration in the previous HAD process. Consequently, the design of the products was sometimes unsatisfactory from the viewpoint of ergonomics, even though users were emotionally satisfied with the products. To overcome this problem, in this study, we propose a new human-oriented design methodology that is enhanced by taking the physical factors into consideration. The HAD scheme was verified by using a haptic chair simulator to design a tilt mechanism of an office chair for which the stiffness of the backrest can be adjusted; then, the design was simulated using MADYMO. The results show that the proposed method can reflect both the physical and emotional factors to modify the design in real-time.

Design of Haptic Chair based on Haptic-Aided Design Capable of Design Parameter Adjustment (햅틱보조설계 기반의 설계변수 조절이 가능한 햅틱의자의 설계)

  • Huh, Seok-Haeng;Jin, Yong-Jie;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.860-864
    • /
    • 2008
  • In modern society, people tend to spend their time on various types of chairs. However, it is not easy for a designer to design a comfortable chair, because satisfaction with the chair depends not only on the quantitative elements such as size, but also on the qualitative element such as the user's feeling. To deal with these problems, there have been many studies on designing an ergonomics chair. In this paper, the hapticaided design (HAD) system was adopted to design the ergonomics chair. Based on the HAD system, the designer can experience whether the chair is comfortable or not through the haptic device, and also can modify the design parameters instantaneously. The haptic chair capable of controlling the design parameters in real time was proposed as a haptic simulator. The controllable parameters such as the seat height, reclining angle, stiffness of the backrest, and so on were selected based on the previous researches related to ergonomics chairs. It will reduce the development cost and time by replacing the process of making the real mock-up and prototype with the haptic chair.

  • PDF

Design of Backrest and Seat Pan of Chairs on the Basis of Haptics-Aided Design Method (햅틱 보조 설계 기법에 기반한 의자의 등판 및 좌판의 설계)

  • Jin, Yong-Jie;Lee, Sang-Duck;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.527-533
    • /
    • 2010
  • The feeling that is evoked when products are handled has become increasingly important in the design of products primarily used by humans. In the traditional product design process, prototypes are built several times in order to evaluate the feeling evoked during use. However, these design processes can be optimized by adopting a haptic simulator that can serve as a prototype. The design method based on the use of the haptic simulator is called haptics-aided design (HAD), which is the main subject of this paper. Here, a new HAD method that can be effectively used to design a custom-made chair is proposed. A haptic simulator, which is composed of a haptic chair and an intuitive graphical user interface, was developed. The simulator can adjust the impedance of the backrest and seat pan of a chair in real time. The haptic chair was used instead of real prototypes in order to evaluate the comfort of the initially designed seat pan and backrest on the basis of their stiffness and damping values. It was shown that the HAD method can be effectively used to design a custom-made chair and can be extended to other product design processes.

Design and Implementation of a Real-time Education Assistive Technology System Based on Haptic Display to Improve Education Environment of Total Blindness People (전맹 시각장애인의 교육환경을 개선시키기 위한 햅틱 디스플레이 기반의 실시간 교육보조공학 시스템의 설계 및 구현)

  • Jung, Jung-Il;Kim, Heung-Gi;Cho, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.94-102
    • /
    • 2011
  • In this paper, we proposed a real-time education assistive technology system based on haptic display to improve education environment of total blindness people. The proposed system consist of a lecture and writing S/W for educator and a previously developed haptic display H/W for total blindness people. The one has the major function which is quickly and easily writing to the education data, that will be provided to total blindness people, through familiar UI, the other has the major function which print out the tactile information about the education data. The result of implementing system not only provides a similar result using existing braille instrument and printer, but shows that it is effective performance and functionality because it can print out the education data in real time.

Haptic-Aided Design Using a Haptic Chair Capable of Adjustable Backrest (등판 조절이 가능한 햅틱의자를 이용한 햅틱 보조 설계)

  • Huh, Seok-Haeng;Lee, Sang-Duck;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.243-249
    • /
    • 2009
  • In modern society, people spend most of their time on various types of chairs. However, it is not easy for a designer to design a comfortable chair because satisfaction with the chair depends not only on the quantitative elements such as size, but also on the qualitative element such as the user's feeling. To deal with these problems, there have been many studies on designing ergonomic chairs. This paper proposes the haptic-aided design (HAD) system to design an ergonomic chair. Based on the HAD system, the designer can experience whether the chair is comfortable or not through the haptic device, and also can modify the design parameters instantaneously. The haptic chair capable of controlling the design parameters in real time was proposed as a haptic simulator. The controllable parameters, such as seat height, reclining angle, stiffness of the backrest, and so on were selected based on the previous research related to ergonomic chairs. The proposed methodology will help reduce the development cost and time by replacing the process of making the real mock-ups and prototypes with the haptic chair.

  • PDF

Design of the control Algorithm for Improvement of the Convenience the Active-type Walking Aid (전동 보행보조기의 편의성 향상을 위한 제어기 설계)

  • Lee, D.K.;Kong, J.S.;Goh, M.S.;Kang, S.J.;Lee, S.M.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • This paper aims to find the optimal control gain for enhancing the convenience of electric walking frames and design a control algorithm. With the recent advances in medical technology, there has been a rapid increase in the aging population and a variety of mobile walking frames have been developed for improvement of the quality of life. However, the manual walking frames of such mobile aids don't have any electric motor which helps facilitate elderly users' walking and thus are not efficient enough for the old people of weak strength to use especially when moving on uneven surfaces such as slopes or thresholds. The types of electric walking frames have been developed to overcome such inefficiency. Electric walking frames require users' control operations for motor driving unlike manual frames. Therefore, when they are not properly handled, it causes considerable inconvenience to their users. The present study compared the electric walking frames with manual ones in terms of operational convenience and attempted to improve the user convenience of walking frames varying the control value for user convenience based on certain standards. This paper presented a haptic sensor designed to recognize the will to walk and measure the degree of convenience and proposed a control algorithm for improvement of convenience. For user convenience, this paper evaluated the relative convenience of walking frames in view of changing differences between the center of vehicle (COV) and the center of position (COP). With the employment of an electric walking frame and a new measuring method, all the processes were experimentally tested and validated.

Psychometric Analysis for Designing Elderly Customized Walking Assist Device (고령자 맞춤형 보행보조서비스 설계를 위한 심리측정 분석)

  • Kim, Junghwa;Jang, Jeong-ah;Choi, Keechoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • In accordance to rapid aging of population, the accidents of elderly pedestrian and pedestrian safety are becoming very important issues. In terms of smartphone technologies, older people are increasingly looking for useful and friendly ICT services that which can add a value on their silver life. This paper introduced a new IT-based service for elderly walking assist using a smart-phone accompanied by a wearable watch. We describe the functional requirements and a systems architecture model with an interface between a smart-phone and wearable watch. Moreover, this study attempted to verify what services are needed and to estimate elderly pedestrians' WTP (willingness to pay) for IT-based walking assistance device. A total of 189 elderly pedestrians were randomly surveyed through face-to-face interviews. The questionnaire consisted of 3 categories: (1) questions pertaining to socio-economic status, (2) 12 questions regarding walking attitudes, and (3) a question to measure WTP. With this gathered data, factor analysis and path model estimating were conducted. The results identified the elderly user requirements and the use-value of new innovative products for IT-based walking assistance services by two groups(latent elderly and elderly). The modeling result shows that elderly's service preference would increase the possibilities for the commercialization of IT-based walking device with improving their walking safety.