• Title/Summary/Keyword: 핵의학

Search Result 1,921, Processing Time 0.032 seconds

핵의학 DICOM 영상 Data 분석

  • Kim, Sae-Rom;Jeong, Hae-Jo;Seong, Min-Mo;Choe, Seung-Uk;Jang, Bong-Mun;Yang, Geon-Ho;Kim, Hui-Jung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.108-112
    • /
    • 2004
  • 현재 많은 병원의 핵의학과에서 핵의학 장비를 이용하여 많은 수의 핵의학영상을 생성하고 있다. 생성된 핵의학영상은 환자의 질병을 진단 또는 치료하기 위해 기능적 정보를 많이 포함하고 있다. 하지만 이렇게 중요한 기능적 정보가 현재의 PACS 에서는 그 중요한 기능적 정보를 모두 표현하지 못 하는 문제점이 있다. DICOM 에서는 핵의학 영상 및 데이터에 대하여 표준을 정해놓고 그 표준을 따르도록 규정하고 있다. 이러한 DICOM 3.0 표준에서 핵의학 영상 및 데이터에 대하여 표준을 정해놓은 일은 비교적 최근의 일이어서 많은 수의 핵의학 영상 장비나 PACS에서는 핵의학영상에 대한 특징이 반영되지 않고 있는 실정이다. 이에 핵의학 영상의 호환성을 향상과 PACS와 핵의학 장비간의 호환성을 향상시키기 위하여 DICOM 3.0 Part 3에 정의된 IOD 중 꼭 필요하다고 생각되는 최소한의 Tag들을 선별하여 Guideline을 작성하여 DICOM 영상을 Guideline의 내용을 토대로 분석하였고 핵의학 영상이 PACS에서 제대로 활용되지 못 하는 원인을 분석 하였다.

  • PDF

Long-Term Trend Analysis in Nuclear Medicine Examinations (핵의학 영상 검사의 중장기 추세 분석 - 서울 소재 일개 상급 종합병원을 중심으로 -)

  • Jung, Woo-Young;Shim, Dong-Oh;Choi, Jae-Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.15-28
    • /
    • 2019
  • Purpose Nuclear medicine was initially introduced in Korea in 1969 and widely applied to treat hyperthyroidism with $^{131}I$. Also, gamma camera was adopted in 1969 in the first place and its application has been growing continually in many ways. We analyzed long-term trend in nuclear medicine examinations for the last 2 decades. The purpose of this paper is to make predictions and to set both plans and directions on the development of nuclear medicine. Materials and Methods We analyzed the performance of nuclear medicine examinations and therapies performed in Asan Medical Center from 1998 to 2017. Results Results from the last 20 years regarding Bone scan, Renal scan, MUGA scan and $^{18}F$-FPCIT, Bone Mineral Density were on a increase. And Myocardium perfusion SPECT, Thyroid scan, Lung scan were on a decrease while $^{18}F-FDG$ PET maintained on a steady course. Until 2010 there was a positive performance with the therapy but after the excessive medical care in thyroid examination performance is at status quo. Key events such as a medical strike(2000), Middle-East Respiratory Syndrome (2015) influenced the overall performance of the therapy. Conclusion In order to promote a long-term growth in nuclear medicine examination and therapy, it is inevitable to respond to the changes in current medical environment. Furthermore, it is strongly suggested to put efforts to maintain and develop new examinations and clinical indicators.

Evaluation of Radiation Exposure to Medical Staff except Nuclear Medicine Department (핵의학 검사 시행하는 환자에 의한 병원 종사자 피폭선량 평가)

  • Lim, Jung Jin;Kim, Ha Kyoon;Kim, Jong Pil;Jo, Sung Wook;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.32-35
    • /
    • 2016
  • Purpose The goal for this study is to figure out that medical staff except Nuclear Medicine Department could be exposed to radiation from the patients who take Nuclear Medicine examination. Materials and Methods Total 250 patients (Bone scan 100, Myocardial SPECT 100, PET/CT 50) were involved from July to October in 2015, and we measured patient dose rate two times for every patients. First, we checked radiation dose rate right after injecting an isotope (radiopharmaceutical). Secondly, we measured radiation dose rate after each examination. Results In the case of Bone scan, dose rate were $0.0278{\pm}0.0036mSv/h$ after injection and $0.0060{\pm}0.0018mSv/h$ after examination (3 hrs 52 minutes after injection on average). For Myocardial SPECT, dose rate were $0.0245{\pm}0.0027mSv/h$ after injection and $0.0123{\pm}0.0041mSv/h$ after examination (2 hrs 09 minutes after injection on average). Lastly, for PET/CT, dose rate were $0.0439{\pm}0.0087mSv/h$ after examination (68 minutes after injection on average). Conclusion Compared to Nuclear Safety Commission Act, there was no significant harmful effect of the exposure from patients who have been administered radiopharmaceuticals. However, we should strive to keep ALARA(as low as reasonably achievable) principle for radiation protection.

  • PDF

Development of Integration Protocol of Nuclear Medicine Image with A Commercial PACS (핵의학 영상을 상용 PACS에 연동 전송하는 프로토콜 개발)

  • Im, Ki-Chun;Choi, Yong;Park, Jang-Chun;Song, Tae-Yong;Choi, Yeon-Sung;Lee, Kyung-Han;Kim, Sang-Eun;Kim, Byung-Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.431-436
    • /
    • 2002
  • The purpose of this study was to develop an integration protocol of Nuclear Medicine image with a commercial PACS. Two independent local networks. PACS network and Nuclear Medicine network, were connected using a Nuclear Medicine DICOM gateway A DICOM converter Program was developed to convert Interfile 3.3. which is used in nuclear medicine scanners in our hospital. to DICOM 3.0. The Program converts Interfile format images to those of DICOM format and also transfers converted DICOM files to PACS DICOM gateway. PACS DICOM gateway compares and matches the DICOM image information with patient information in Hospital Information System and then saves to PACS database. The transfer protocol was designed to be able to transfer Interfile. screen dumped file. and also scanned file. We successfully transferred Nuclear Medicine images to PACS. Images transferred by Interfile transfer protocol could be further processed using various tools in PACS. The graphs, numerical information and comments could be conveniently transferred by screen dumped file. The image in a hard copy can be transferred after scanning using an ordinary scanner. The developed protocol can easily transfer Nuclear Medicine images to PACS in various forms with low cost.

Radiation Exposure Analysis of Female Nuclear Medicine Radiation Workers (여성 핵의학 방사선종사자의 피폭요인 분석)

  • Lee, Juyoung;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.209-225
    • /
    • 2016
  • In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus, those who have never been pregnant need to have a more active defensive conduct for the future possibility of pregnancy.