• Title/Summary/Keyword: 핵심어 유사도

Search Result 45, Processing Time 0.019 seconds

Using similarity based image caption to aid visual question answering (유사도 기반 이미지 캡션을 이용한 시각질의응답 연구)

  • Kang, Joonseo;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.191-204
    • /
    • 2021
  • Visual Question Answering (VQA) and image captioning are tasks that require understanding of the features of images and linguistic features of text. Therefore, co-attention may be the key to both tasks, which can connect image and text. In this paper, we propose a model to achieve high performance for VQA by image caption generated using a pretrained standard transformer model based on MSCOCO dataset. Captions unrelated to the question can rather interfere with answering, so some captions similar to the question were selected to use based on a similarity to the question. In addition, stopwords in the caption could not affect or interfere with answering, so the experiment was conducted after removing stopwords. Experiments were conducted on VQA-v2 data to compare the proposed model with the deep modular co-attention network (MCAN) model, which showed good performance by using co-attention between images and text. As a result, the proposed model outperformed the MCAN model.

A Comparative Study using Bibliometric Analysis Method on the Reformed Theology and Evangelicalism (개혁신학과 복음주의에 관한 계량서지학적 비교 연구)

  • Yoo, Yeong Jun;Lee, Jae Yun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.29 no.3
    • /
    • pp.41-63
    • /
    • 2018
  • This study aimed at analyzing journals and index terms, authors of the reformed theology and evangelicalism, neutral theological position by using bibliometrical analyzing methods. The analyzing methods are average linkage and neighbor centralities, profile cosine similarities. Especially, when analyzing the relationship between authors, we interpreted the research topic by finding the key shared index terms between the authors. In the journal analysis results, 9 journals were largely clustered together in the two clusters of the reformed theology and evangelicalism, but Presbyterian Theological Quarterly that is thought to be a reformed journal was clustered in evangelical cluster. In the index terms analysis results of the clusters, the reformed theology and evangelicalism were key words representing the two clusters. In the authors' analysis results, we had 9 clusters and the Presbyterian theologian studying the reformed theology had the four clusters and the non-Presbyterian theologian had the 5 clusters. Therefore, we consistently had the two clusters of the reformed theology and evangelicalism in all the analysis of the journals and the index terms, the authors.

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

A Study on the Finding of Promising Export Items in Defense industry for Export Market Expansion-Focusing on Text Mining Analysis-

  • Yeo, Seoyoon;Jeong, Jong Hee;Kim, Seong Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.235-243
    • /
    • 2022
  • This paper aims to find promising export items for market expansion of defense export items. Germany, the UK, and France were selected as export target countries to obtain unstructured forecast data on weapons system acquisition plans for the next ten years by each country. Using the TF-IDF in text mining analysis, keywords that appeared frequently in data from three countries were derived. As a result of this paper, keywords for each country's major acquisition projects drawing. However, most of the derived keywords were related to mainstay weapon systems produced by domestic defense companies in each country. To discover promising export items from text mining, we proposed that the drawn keywords are distinguished as similar weapon systems. In addition, we assort the weapon systems that the three countries will get a plan to acquire commonly. As a result of this paper, it can be seen that the current promising export item is a weapon system related to the information system. Prioritizing overseas demands using key words can set clear market entry goals. In the case of domestic companies based on needs, it is possible to establish a specific entry strategy. Relevant organizations also can provide customized marketing support.

Analysis of Human Sensibility Ergonomic Corpora for Automatic Indexation - Extraction of informative features - (자동 지표화를 위한 감성공학 분야 코퍼스 분석- 전문적 문서의 특성 정보 추출)

  • 배희숙;김관웅;곽현민;이상태
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.53-58
    • /
    • 2002
  • 본 논문은 감성공학 데이터의 지속적인 지표화를 위해 과정의 자동화를 제안하며 자동 지표화가 문서의 자동 요약과 유사하다는 점에 착안하여 문서 자동분류, 정보유형 추출, 특성언어 추출 및 문장 재구성이라는 단계별 기술의 기초가 되는 정보유형 및 핵심어, 그리고 특성표현을 통한 정보문 추출 방법에 대해 연구하였다. 감성공학 코퍼스 분석을 통한 본 연구는 감성공학 분야에서의 지식 관리 시스템과 자동 요약 시스템에 활용될 수 있다.

  • PDF

A Study on the Rejection Capability Based on Anti-phone Modeling (반음소 모델링을 이용한 거절기능에 대한 연구)

  • 김우성;구명완
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.3-9
    • /
    • 1999
  • This paper presents the study on the rejection capability based on anti-phone modeling for vocabulary independent speech recognition system. The rejection system detects and rejects out-of-vocabulary words which were not included in candidate words which are defined while the speech recognizer is made. The rejection system can be classified into two categories by their implementation methods, keyword spotting method and utterance verification method. The keyword spotting method uses an extra filler model as a candidate word as well as keyword models. The utterance verification method uses the anti-models for each phoneme for the calculation of confidence score after it has constructed the anti-models for all phonemes. We implemented an utterance verification algorithm which can be used for vocabulary independent speech recognizer. We also compared three kinds of means for the calculation of confidence score, and found out that the geometric mean had shown the best result. For the normalization of confidence score, usually Sigmoid function is used. On using it, we compared the effect of the weight constant for Sigmoid function and determined the optimal value. And we compared the effects of the size of cohort set, the results showed that the larger set gave the better results. And finally we found out optimal confidence score threshold value. In case of using the threshold value, the overall recognition rate including rejection errors was about 76%. This results are going to be adapted for stock information system based on speech recognizer which is currently provided as an experimental service by Korea Telecom.

  • PDF

A Study on the Korean Grapheme Phonetic Value Classification (한국어 자소 음가 분류에 관한 연구)

  • Yu Seung-Duk;Kim Hack-Jin;Kim Soon-Hyop
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.89-92
    • /
    • 2001
  • 본 논문에서는 한국어 대용량 음성인식 시스템의 기초가 되는 자소(grapheme)가 지니는 음가를 분류하였다. 한국어 자소를 음성-음운학적으로 조음 위치와 방법에 따라 분류하여, 그 음가 분석에 관한 연구와 함께 한국어 음성인식에서 앞으로 많이 논의될 청음음성학(auditory phonetics)에 대하여 연구하였다. 한국어는 발음상의 구조와 특성에 따라 음소 분리가 가능하여 초성, 중성, 종성 자소로 나눌 수 있다. 본 논문에서 초성은 자음음소 18개, 중성은 모음 음소(단모음, 이중모음) 17개, 그리고 'ㅅ' 추가 8종성체계의 자음음소로 하였다. 청음음성학적 PLU(Phoneme Like Unit)의 구분 근거는 우리가 맞춤법 표기에서 주로 많이 틀리는 자소(특히, 모음)는 그 음가가 유사한 것으로 판단을 하였으며, 그 유사음소를 기반으로 작성한 PLU는 자음에 'ㅅ' 종성을 추가하였고, 모음에 (ㅔ, ㅐ)를 하나로, (ㅒ, ㅖ)를 하나로, 그리고 모음(ㅚ, ㅙ, ㅞ)를 하나의 자소로 분류하였다. 혀의 위치와 조음 방법과 위치에 따라 분류한 자음과 모음의 자소를 HTK를 이용하여 HMM(Hidden Markov Model)의 자소 Clustering하여 그것의 음가를 찾는 결정트리를 검색하여 고립어인식과 핵심어 검출 시스템에 적용 실험한 결과 시스템의 성능이 향상되었다.

  • PDF

Document Content Similarity Detection Algorithm Using Word Cooccurrence Statistical Information Based Keyword Extraction (단어 공기 통계 정보 기반 색인어 추출을 활용한 문서 유사도 검사 알고리즘)

  • Kim, Jinkyu;Yi, Seungchul;Park, Kibong;Haing, Huhduck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.111-113
    • /
    • 2016
  • 빠른 속도로 쏟아지고 있는 각종 발행물, 논문들에 대한 표절 검토는 표절 검출 알고리즘을 통해 직접적인 복제, 짜깁기, 말 바꾸어 쓰기 등을 검토하거나 표절 검토자가 직접 해당 문서의 키워드를 검색하여 확인하는 방식으로 이루어지고 있다. 하지만 점점 더 늘어나는 방대한 양의 문서들에 대한 표절 검토 작업은 더욱 정교한 검토 방법론을 필요로 하고 있으며, 이를 돕기 위해 문서의 직접적인 단어나 복제 비교에서 더 나아가 문서의 내용을 비교하여 비슷한 내용의 문서들을 필터링 및 검출할 수 있는 방법을 제안한다. 문서의 내용을 비교하기 위해 키워드 추출 알고리즘을 선행하며, 이를 통해 문서의 핵심 내용을 비교할 수 있는 기반을 마련하여 표절 검토자의 작업의 정확성과 속도를 향상시키고자 한다.

  • PDF

An Experimental Study on Feature Selection Using Wikipedia for Text Categorization (위키피디아를 이용한 분류자질 선정에 관한 연구)

  • Kim, Yong-Hwan;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.155-171
    • /
    • 2012
  • In text categorization, core terms of an input document are hardly selected as classification features if they do not occur in a training document set. Besides, synonymous terms with the same concept are usually treated as different features. This study aims to improve text categorization performance by integrating synonyms into a single feature and by replacing input terms not in the training document set with the most similar term occurring in training documents using Wikipedia. For the selection of classification features, experiments were performed in various settings composed of three different conditions: the use of category information of non-training terms, the part of Wikipedia used for measuring term-term similarity, and the type of similarity measures. The categorization performance of a kNN classifier was improved by 0.35~1.85% in $F_1$ value in all the experimental settings when non-learning terms were replaced by the learning term with the highest similarity above the threshold value. Although the improvement ratio is not as high as expected, several semantic as well as structural devices of Wikipedia could be used for selecting more effective classification features.