• Title/Summary/Keyword: 핵분열 생성물 분석

Search Result 34, Processing Time 0.018 seconds

Minimum Detectable Radioactivity Concentration of Atmospheric Particulate Measurement System for Nuclear Test Monitoring (핵활동 감시를 위한 대기 입자 측정시스템의 최소검출 방사능 농도 결정)

  • Kim, Jong-Soo;Yoon, Suk-Chul;Shin, Jang-Soo;Kwack, Eun-Ho;Choi, Jong-Seo
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.111-117
    • /
    • 1997
  • Recently, the conclusion of Comprehensive Test Ban Treaty(CTBT) is globally constructing a network system for nuclear test monitoring. The radionuclide experts of the Conference on Disarmament recommended that the detection of nuclear debris in the atmosphere was an essential factor of nuclear test monitoring and proposed the technical requirements. Based on those requirements, atmospheric radionuclide monitoring system to detect nuclear debris generated from the nuclear explosion test was composed. The system is comprised of high volume air sampler(HVAS), filter paper presser and high purity germanium detector(HPGe). Minimum detectable concentrations(MDCs) of the key nuclides requiring in CTBT monitoring strategies are determined by considering of decay time, counting time and flow rate of the high volume air sampler for the rapid explosion and the optimum measurement condition. The results were selected $10{\pm}$2h, $20{\pm}$2h and $850{\pm}50m^3$/h as parameters, respectively. The relation between the natural air-borne radionuclide concentration of $^{212}Pb$ and MDC were calculated which gave effect in the Compton continuum baseline due to those nuclides in the gamma-ray spectroscopy. These results can be used as an actually tool in the CTBT monitoring strategies.

  • PDF

Determination of La in $U_3Si/Al$ Spent Nuclear Fuel by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry (Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry에 의한 $U_3Si/Al$ 사용후핵연료 중 La의 분리 및 정량)

  • Han, Sun Ho;Choi, Kwang Soon;Kim, Jung Suk;Jeon, Young Shin;Park, Yang Soon;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.601-607
    • /
    • 2000
  • Lanthanum has been used as one of the burnup monitor in spent nuclear fuel. $U_3Si/Al$ spent nuclear fuel contains small amount of La in high concentration of U and Al. Therefore, chemical separation of La is required to remove matrix elements. At first, ion chromatography (IC) and inductively coupled plasma systems were installed in radiation shielded glove box to handle the radioactive samples. Retention behavior of uranium, aluminum, lanthanum and some interesting fission products (Sr, Zr, Y, Mo, Ru, Pd, Rh, Cs, Ba, Ce, Pr, Nd, Sm, Eu and Cd) was investigated using the CG10 column and ${\alpha}$-HiBA eluent. As all elements were eluted earlier than lanthanum in 0.2 M ${\alpha}$-HiBA eluent, a portion of U and Al was directly passed to waste using a three way valve between the column and the nebulizer. Thus it was possible to determine the lanthanum in a high concentration of U and Al matrix. Retention time of La was about 12 minutes in this separation condition. Optimum range for the determination of La in $U_3Si/Al$ spent nuclear fuel was $1-10{\mu}g/L$ (ppb) with this system and detection limit was $0.25{\mu}g/L$ in case of $200{\mu}L$ of sample volume.

  • PDF

Criticality Uncertainty Analysis of Spent Fuel Transport Cask applying Burnup Credit (연소도이득효과(BUC) 적용 사용후핵연료 운반용기의 임계 불확실도 평가)

  • Lee, Gang-Ug;Park, Jea-Ho;Kim, Do-Hyung;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.191-198
    • /
    • 2011
  • In general, conventional criticality analyses for spent fuel transport/dry storage systems have been performed based on assumption of fresh fuel concerning the potential uncertainties from number density calculation of Transuranic and Fission Products in spent fuel. However, because of economic loss due to the excessive criticality margin, recently the design of transport/dry storage systems with Burnup Credit(BUC) application has been actively developed. The uncertainties in criticality analyses on transport/storage systems with BUC technique show strong dependance upon initial enrichment and burnup rate, whereas those in the conventional criticality evaluation based on fresh fuel assumption do not show such a dependance. In this study, regulatory-required uncertainties of the criticality analyses for BK 26 Cask, which is conceptually designed spent fuel transport cask with BUC corresponding to the limiting circumstances on nuclear power plants in Korea, are evaluated as a function of initial enrichment and burnup rate. Results of this study will be used as basic data for spent fuel loading curve of BK 26 Cask.

Cesium Release Behavior during the Thermal Treatment of High Bum-up Spent PWR Fuel (고연소도 경수로 사용후핵연료의 열처리에 따른 세슘 방출거동)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • The dynamic release behavior of Cs from high burn-up spent PWR fuel was experimentally performed under the conditions of a thermal treatment process such as voloxidation and sintering conditions. In voloxidation process, influence of the oxidation and reduction atmosphere on the Cs release characteristic using fragment type of spent fuel heated up to $1,500^{\circ}C$ was compared. In sintering process, temperature history effect on Cs release behavior was evaluated using green pellet under 4% $H_2/Ar$ environment. Temperature range for complete Cs release from spent fuel fragment under voloxidation condition was about $800^{\circ}C{\sim}1,200^{\circ}C$, but that of green pellet under the reduction atmosphere was $1,100^{\circ}C{\sim}1,400^{\circ}C$. Key parameters on Cs release behavior from spent fuel was powder formation as well as the diffusion rate of Cs compound to grain boundary and fuel surface.

  • PDF