• Title/Summary/Keyword: 해저 피복 분류

Search Result 3, Processing Time 0.015 seconds

Water Column Correction of Airborne Hyperspectral Image for Benthic Cover Type Classification of Coastal Area (연안 해저 피복 분류를 위한 항공 초분광영상의 수심보정)

  • Shin, Jung Il;Cho, Hyung Gab;Kim, Sung Hak;Choi, Im Ho;Jung, Kyu Kui
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.31-38
    • /
    • 2015
  • Remote sensing data is used to increasing efficiency on benthic cover type survey. Satellite and aerial imagery has variance of reflectance by water column effect even if bottom is consisted with same cover type and condition. This study tried to analyze advances of surveying extent and accuracy through water column correction of CASI-1500 hyperspectral image. Study area is coast of Gangneung city, South Korea where benthic environment is rapidly changing with bleaching of coral reef. Water column correction coefficient was estimated using regression models between water reflectance ($R_W$) and depth for sand bottom then the coefficients were applied to whole image. The results shows that expanded interpretable depth from 6-7m to 15m and decreased variation of reflectance by depth. Additionally, water column corrected reflectance image shows 13%p increased accuracy on benthic cover type classification.

High-resolution Echo Facies Analysis of Sedimentary Deposits around Dok-Island Volcanoes (독도 화산군 주변 퇴적층의 고해상 탄성파상 분석)

  • Lee, Yong-Kuk;Han, Sang-Joon;Yoon, Seok-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • This study presents Quaternary sedimentation pattern around Dok-Island volcanoes (Dok Island and Dok Seamount), based on analysis of high-resolution (chirp) echo characters. Echo facies If, showing sharp, continuous bottom echo without subbottom reflectors, is recorded mainly from the flat tops of the volcanoes. This facies indicates sands and gravels (re) deposited by shallow marine processes. Echo facies IIA in the basin floor and basal slopes of the volcanoes and Oki Bank is characterized by semi-prolonged bottom and several parallel subbottom echoes. This facies reflects hemipelagic settling with intermittent influences of turbidity currents in the slope areas. Echo facies IIC is recorded from acoustically-transparent debrite masses on the basal slopes of the volcanoes and Oki Bank. Echo facies IIIA is characterized by irregular hyperbolic echoes in the slope areas of the volcanoes. It suggests hard rock basement or irregular volcanic edifices. Echo facies IIIC shows regularly-overlapping hyperbolic bottom echoes. It is interpreted to represent rock-fall deposits (talus) accumulated in the mid-slope area. Echo characters and topography suggest that the tops of Dok-Island volcanoes were flattened and lowered by shallow-marine erosional processes. The eroded sediments were transported to and deposited in the base of slope and basin plain mainly by debris flows and turbidity currents along submarine canyons and valleys.

  • PDF

Geo-surface Environmental Changes and Reclaimed Amount Prediction Using Remote Sensing and Geographic Information System in the Siwha Area (원격탐사와 지리정보시스템을 이용한 시화지구 일대의 지표환경변화와 토공량 예측연구)

  • Yang, So-Yeon;Song, Moo-Young;Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.161-176
    • /
    • 1999
  • The objectives of this study are to analyze the changes of geo-surface topography in the Siwha embankment and the Ahsan city area by the image processing of Landsat Thematic Mapper data, and to estimate the reclaimed amount of the exposed tidal flat in the Siwha area using the GIS. False color composite, Tasseled cap, NVDI(normalized difference vegetation index), and supervised classification techniques were used to analyze the distribution of sediments and the aspect of topographical variations caused by artificial human actions. The total amount of the exposed tidal flat was estimated on the basis of the database snch as aerial photography, hydrographic chart, geological map, and scheme drawing in the Siwha area. The possible excavation regions for a seawall were predicted analyzing the supervised classification image of Landsat TM data. Tasseled cap images were used to observe the distribution of sediments. The difference of the NDVI images between spring and summer seasons indicates that deciduous and coniferous forests were distributed over the whole areas. The total fill-volume of the exposed Siwha tidal flat and the fill-volume of the construction planning seawall were calculated as $581,485,354\textrm{m}^3{\;}and{\;}3,387,360\textrm{m}^3$, respectively, from the digital terrain analysis. Daebu Island, Sunkam Island, and the part of Songsan-myeon were chosen as the cut area to make the seawall, and their cut-volumes were estimated as $5,229,576\textrm{m}^3,{\;}79,227,072\textrm{m}^3,{\;}and{\;}47,026,008\textrm{m}^3$, respectively. Therefore, the cut-volume of Daebu Island alone among three areas was sufficient to make the seawall.

  • PDF