• Title/Summary/Keyword: 해저사태지형

Search Result 4, Processing Time 0.018 seconds

Seafloor Morphology and Surface Sediment Distribution of the Southwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 남서부 해저지형 및 표층퇴적물 분포)

  • Koo, Bon-Young;Kim, Seong-Pil;Lee, Gwang-Soo;Chung, Gong Soo
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • Multi-beam echosounder data and grain size analysis data of surface sediment were acquired and analyzed in order to investigate the shelf-to-slope morphology, geological character, and their geological controlling factors in the southwestern margin of the Ulleung Basin. According to the morphological character, the continental shelf can be divided into two parts: (1) shallow (~100 m) and steep ($0.5^{\circ}$) inner shelf, (2) deep (100-300 m) and gentle ($0.2^{\circ}$) outer shelf. The continental slope is featured with eight distinct topographic depressions of various spatial dimension (~121 $km^2$ in area) and head wall gradient (${\sim}24.3^{\circ}$). They are developed adjacent to each other and presumably formed by submarine landslides which have recurred under the strong influences of earthquakes and eustatic sea-level change. The inner continental shelf and the continental slope are dominated by fine-grained sediment, whereas the outer continental shelf is dominated by coarse-grained sediment. The surface sediment distribution seems dominantly influenced by eustatic sea-level change. The outer continental shelf is mostly covered by coarse relict sediment deposited during lowstand sea-level, while the inner shelf is covered with recent sediment during highstand sea-level. The surface of the continental slope is covered with fine-grained sediments which were supplied by hemipelagic advection process.

Late Quaternary Sedimentary Processes in the Northern Continental Margin of the South Shetland Islands, Antarctica (남극 남쉐틀랜드 군도 북부 대륙주변부의 후기 제 4기 퇴적작용)

  • 윤석훈;윤호일;강천윤
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Sedimentary facies and high-resolution echo facies were analyzed to elucidate sedimentation pattern of the late Quaternary glacial-marine deposits in the northern continental margin of the South Shetland Islands. Six sedimentary facies are classified, based on grain texture and sedimentary structures in gravity cores. The high-resolution (3.5 ㎑) echo characters are classified into 6 echo facies on the basis of clarity, continuity, and shape of bottom and subbottom echoes together with seafloor topography. Distribution of the echo and sedimentary facies suggest that there was a significant change in sedimentation pattern between the Last Glacial Maximum (LGM) and subsequent glacier-retreating period. When the grounded glaciers extended to the present shelfbreak during LGM, coarse-grained subglacial tills were widespread in the shelf area, and deep troughs in the shelf were carved beneath the fast-flowing ice steam. As the glacial margin retreated landward after LGM, dense meltwater plumes released from the retreating ice-front were funneled along the glacier-carved troughs, and accumulated channel- or cannyon-fill deposits in the shelf and the upper to mid slope. At that time, slope sediments seem to have been reworked by slope failures and unsteady contour currents, and further transported by fine-grained turbidity currents along the South Shetland Trench. After the glacial retreat, sediments in the shelf and slope areas have been mainly introduced by persistent (hemi) pelagic settling, and fine-grained turbidity currents frequently occur along the axis of the South Shetland Trench.

Late Quaternary Depositional Processes in the Korea Plateau and Ulleung Interplain Gap, East Sea (동해 한국대지 및 울릉 분지간통로의 제4기 후기 해저퇴적작용)

  • 윤석훈;박장준;한상준
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.187-198
    • /
    • 2003
  • High-resolution (Chirp, 3-11 kHz) echo facies and sedimentary facies of piston-core sediments were analyzed to reveal the late Quaternary depositional processes in the Korea Plateau and Ulleung Interplain Gap. The Korea Plateau is an Isolated topographic high with a very restricted input of terrigenous sediments, and its slope is characterized by a thin sediment cover and various-scale submarine canyons and valleys. Echo and sedimentary facies suggest that the plateau has been moulded mainly by persistent (hemi) pelagic sedimentation and intermittent settling of volcanic ashes. Sediments on the plateau slope and steep margins of ridges and seamounts were reworked by earthquake-induced, large-scale slope failures accompanied by slides, slumps and debris flows. As major fraction of the reworked sediments consists of (hemi) pelagic clay particles, large amounts of sediments released from mass flows were easily suspended to form turbid nepheloid layers rather than bottom-hugging turbidity currents, which flowed further downslope through the submarine canyons and spreaded over the Ulleung Basin plain. In the Ulleung Interplain Gap, sediments were introduced mainly by (hemi) pelagic settling and subordinate episodic mass flows (turbidity currents and debris flows) along the submarine channels from the slopes of the Oki Bank and Dok Island. The sediments in the Ulleung Interplain Channel and its margin were actively eroded and reworked by the deep water flow from the Japan Basin.

Acoustic Characterization of Three Seamounts Located in the Northwest of Marshall Islands, Western Pacific (서태평양 마샬제도 북서쪽에 위치한 세 해저산에 대한 음향상 연구)

  • Lee, Tae-Gook;Lee, Kie-Hwa;Moon, Jai-Woon;Jung, Mee-Sook;Kim, Hyun-Sub;Lee, Sang-Mook
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.193-206
    • /
    • 2004
  • Geophysical data including chirp (3 7 kHz) subbottom profile and detailed bathymetry were obtained over three seamounts in the Ogasawara Fracture Zone (OFZ) of the western Pacific, as a part of manganese crust survey onboard R/V Onnuri in 2003. The OFZ is a 150-km-wide, 600-km-long rift zone, which separates the East Mariana and Pigafetta Basin. The OFZ is unique in that it includes many seamounts (e.g., Magellan Seamounts andseamounts on the Dutton Ridge). The sub-seafloor acoustic echoes obtained near the OFZ were classified into following types on the basis of their characteristics: types I-1(pelagic sediment with parallel or subparallel reflectors), I-2 (pelagic sediment with no internal reflectors), and III-1 (reef build-up complex) on summit; types II-1 and III-2 (basement outcrop) on flank rift zone and upper slope, respectively; type III-3 (slump) on the lower slope and embayment between the flank rift zones; types II-2 (debrite) on the base of slope and basin floor; and types II-3 (turbidite or pelagic sediment) and II-4 (turbidite) on the basin floor. The mass-wasting that produced the complex of type II-2 debrite and III-3 slump on the lower slope and basin may have been caused by (1) strong tensional stress in the OFZ which may cause the numerous fissures or basement faults and (2) complex of the faults on the summit and steep upper slope. The variations in the echo type of pelagic sediment in the summit of seamounts may be related with the changes in the depositional and/or erosional environments. Type I-2 pelagic sediment, which is characterized by a thin and intermittent coverage, was probably deposited at a sheltered area when the current was strong, whereas type I-1 pelagic deposit occurred during a stage of progressive sedimentation.

  • PDF