• Title/Summary/Keyword: 해저면 영상

Search Result 73, Processing Time 0.034 seconds

정밀해저면 영상탐사기를 이용한 독도 동도-서도 주변 천해 해저면조사

  • Kim, Chang-Hwan
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.128-132
    • /
    • 2010
  • 울릉분지 북동쪽 독도 주변 해역은 해수면 위의 작은 섬들과 해저에 큰 화산체로 구성된 독도와 해수면 아래 큰 규모의 해산 두 개(심흥택해산, 이사부해산)가 위치하고 있으며 그 중 해수면위로는 독도만 솟아 있다. 정밀해저면영상기(MS-1000)를 이용하여 큰 규모의 조사선으로 접근이 어려웠던 동도-서도 주변 연안에 대한 정밀해저면영상 조사를 2010년 1월에 소형조사선을 이용하여 수행하였다. 부두 동쪽 해안은 동도와 근접하고 있어 큰 규모의 돌출 암반이 많이 분포하고 있으며 부두 북쪽으로는 모래층의 연흔구조가 많이 나타나며 소규모의 암반 및 자갈들이 많이 분포하는 것으로 판단된다. 동도와 서도사이의 해저면영상을 분석해보면 동도 선착장부근으로는 모래퇴적물의 연흔구조가 많이 나타나고 동도와 서도 중앙부로 가면서 모래보다는 작은 자갈들이 많이 분포하며 서도쪽으로 가면서는 모래 및 자갈퇴적물이 암반구조로 이루어져있는 것으로 판단된다. 정밀해저면영상기(MS-1000)는 고정밀한 해저면영상을 획득할 수 있으며 불규칙한 지형으로 기존 장비가 접근하없어지며기 어려운 해저지형에도 사용하기 적합한 것으로 판단된다. 향후 항구 및 해안구조물 등과 같은 고정밀해저면영상이 필요한 분야에 활용성이 높을 것으로 생각되고 또한 유지/보수가 필요한 수중 군시설 및 부두시설에 대한 정밀조사를 통하여 효율적 관리 정보제공할 수 있을 것으로 판단된다.

  • PDF

Sea-bottom Sediments and Seafloor Acoustic Image by Side Scan Sonar on Sindu-ri Offshore (신두리 해안 Side Scan Sonar 해저면 음향영상과 해저퇴적물)

  • Woo, Han-Jun;Lee, Yong-Kuk;Jeong, Kap-Sik;Je, Jong-Geel;Park, Gun-Tae;Jung, Baek-Hun;Cho, Jin-Hyung;Kim, Seong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.707-721
    • /
    • 2002
  • Seafloor acoustic image data using the side scan sonar system were gathered on the Sindu-ri offshore near the Taean peninsula, middle western Korea. The relationship between the back-scattering acoustic intensity and the sea-bottom sediment properties was studied. And these two data sets were compared and interpreted with the water depth, respectively. Most of sediment properties were correlated well to the acoustic intensity, however the distribution patterns of the sea-bottom sediment and the seafloor acoustic image were not similar to each other except the rocky bottom area. The water depth was not only influential on the distribution pattern of seafloor acoustic image but also showed a linear relation with the sediment properties distribution.

A Study on Integrated Visualization and Mapping Techniques using the Geophysical Results of the Coastal Area of the Dokdo in the East Sea (독도 연안 해저 지구물리 자료의 통합 중첩 주제도 작성 연구)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • The purpose of this study is to integrate and visualize using mapping techniques based on precise seabed geomorphology, seafloor backscattering images and high-resolution underwater images of the nearshore area around the Dokdo, in the East Sea. We have been obtained the precise topography map using multibeam echosounder system around the nearshore area(~50 m) of the southern part of the Seodo. Side scan sonar survey for analysis seafloor backscattering images was carried out in the same area of topography data. High-resolution underwater images(zone(a), zone(b), zone(c)) were taken in significant habitat scope of the nearshore area of the southern part of the Seodo. Using the results of bathymetry, seafloor backscattering images, high-resolution underwater images, we performed an integrated visualization about the nearshore area of the Dokdo. The integrated visualizing techniques are possible to make the seabed characteristic mapping results of the nearshore area of the Dokdo. The integrated visualization results present more complex and reliable information than separate geological products for seabed environmental mapping study and it is useful to understand the relation between seafloor characteristics and topographic environments of the study area. The integrated visualizing techniques and mapping analysis need to study sustainably and periodically, for effective monitoring of the nearshore ecosystem of the Dokdo.

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.

Development of Algorithms for Correcting and Mapping High-Resolution Side Scan Sonar Imagery (고해상도 사이드 스캔 소나 영상의 보정 및 매핑 알고리즘의 개발)

  • 이동진;박요섭;김학일
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.45-56
    • /
    • 2001
  • To acquire seabed information, the mosaic images of the seabed were generated using Side Scan Sonar. Short time energy function which is needed for slant range correction is proposed to get the height of Tow-Fish to the reflected acoustic amplitudes of each ping, and that leads to a mosaic image without water column. While generating mosaic image, maximum value, last value and average value are used for the measure of a pixel in the mosaic image and 3-D information was kept by using acoustic amplitudes which were heading for specific direction. As a generating method of mosaic image, low resolution mosaic image which is over 1m/pixel resolution was generated for whole survey area first, and then high resolution mosaic image which is generated under 0.1m/pixel resolution was generated for the selected area. Rocks, ripple mark, sand wave, tidal flat and artificial fish reef are found in the mosaic image.

A Study on Estimation of Submarine Groundwater Discharge Distribution Area using Landsat-7 ETM+ images around Jeju island (Landsat-7 ETM+ 영상을 이용한 제주 주변 해역의 해저 용출수 분포 지역 추정 연구)

  • Park, Jae-Moon;Kim, Dae-Hyun;Yang, Sung-Kee;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.811-818
    • /
    • 2014
  • This study was aimed to detect Submarine Groundwater Discharge (SGD) distribution image of Sea Surface Temperature (SST) using infrared band of Landsat-7 ETM+ around Jeju island. It is used to analyze SST distribution that DN value of satellite images converted into temperature. The estimation of SGD location is that extracting range of $15{\sim}17^{\circ}C$ from SST. The summer season images(July 28. 2006, Aug. 29. 2006 and Sep. 19. 2008) were used to analyze big difference between SST and temperature of SGD. The results, estimated SGD locations were occurred part of coastal area in northeastern of Jeju island.

Trends and Applications on Multi-beam Side Scan Sonar Sensor Technology (측면주사음탐기 센서 기술 동향 및 응용)

  • Kye, J.E.;Cho, J.I.;Yoo, W.P.;Choi, S.L.;Park, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.6
    • /
    • pp.167-179
    • /
    • 2013
  • 측면주사음탐기(side scan sonar) 센서는 해저면의 영상을 실시간으로 탐색하는 장비로서 해양탐사 및 지질조사, 해저통신 및 어초조사, 기뢰 및 잠수정 탐색 등 해양탐사와 관련한 대표적 장비라고 할 수 있다. 센서는 해저와 목표물을 표시하기 위해 소나 플랫폼의 움직임을 사용하며, 동작주파수 범위는 20kHz~500kHz이다. 이 주파수는 요구되는 깊이와 목표물의 크기에 의해서 결정된다. 센서는 수직으로 $45^{\circ}$, 수평으로 $2^{\circ}$ 정도의 신호전파 방사각도 폭을 가진다. 최근에는 해양탐사와 개발을 위해 빠른 스캔속도와 정확한 정보, 고해상도의 영상을 얻기 위해 해저면에 대한 다중빔 영상센서의 핵심기술로 활용되면서 그 활용성과 중요성이 점차 증가되고 있다. 본고에서는 측면주사소나 센서의 기본 원리 및 종류, 디중빔측면주사소나 기술동향, 응용분야의 사례를 소개함으로써, 국내 기반기술 및 상용화 개발이 취약한 측면주사 음탐기 센서에 대한 이해를 돕고자 한다.

Comparative Analysis of Bathymetry in the Dongdo and the Seodo, Dokdo using Multibeam Echosounder System (다중빔 음향 측심기를 이용한 독도 동도와 서도 남부 연안 해저지형 비교 분석)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.

Analysis of Seabottom and Habitat Environment Characteristics based on Detailed Bathymetry in the Northern Shore of the East Sea(Gyeongpo Beach, Gangneung) (정밀 해저지형 자료 기반 동해 북부 연안(강릉 경포) 서식지 해저면 환경 특성 연구)

  • Lee, Myoung Hoon;Rho, Hyun Soo;Lee, Hee Gab;Park, Chan Hong;Kim, Chang Hwan
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.729-742
    • /
    • 2020
  • In this study, we analyze seabottom conditions and characteristics integrated with topographic data, seafloor mosaic, underwater images and orthophoto(drone) of soft-hard bottom area around the Sib-Ri rock in the northern shore of the East Sea(Gyeongpo Beach, Gangneung). We obtained field survey data around the Sib-Ri rock(about 600 m × 600 m). The Sib-Ri rock is formed by two exposed rocks and surrounding reef. The artificial reef zone made by about 200 ~ 300 structures is shown the western area of the Sib-Ri rock. The underwater rock region is extended from the southwestern area of the exposed the Sib-Ri rock with 9 ~ 11 m depth range. The most broad rocky seabottom area is located in the southwestren area of the Sib-Ri rock with 10 ~ 13 m depth range. The study area were classified into 4 types of seabottom environment based on the analysis of bathymetric data, seafloor mosaics, composition of sediments and images(underwater and drone). The underwater rock zones(Type I) are the most distributed area around the Sib-Ri Rock(about 600 m × 600 m). The soft seabottom area made by sediments layer showed 2 types(Type II: gS(gravelly Sand), Type III: S(Sand)) in the areas between underwater rock zones and western part of the Sib-Ri rock(toward Gyeongpo Beach). The artificial reef zone with a lot of structures is located in the western part of the Sib-Ri rock. Marine algae(about 6 species), Phylum porifera(about 2 species), Phylum echinodermata(about 3 species), Phylum mollusca(about 3 species) and Phylum chordata(about 2 species) are dominant faunal group of underwater image analysis area(about 10 m × 10 m) in the northwestern part of the Sib-Ri rock. The habitat of Phylym mollusca(Lottia dorsuosa, Septifer virgatus) and Phylum arthropoda(Pollicipes mitella, Chthamalus challengeri hoek) appears in the intertidal zone of the Sib-Ri rock. And it is possible to estimate the range and distribution of the habitat based on the integrated study of orthphoto(drone) and bathymetry data. The integrated visualization and mapping techniques using seafloor mosaic images, sediments analysis, underwater images, orthophoto(drone) and topographic data can provide and contribute to figure out the seabottom conditions and characteristics in the shore of the East Sea.

Side-scan sonar survey in the Pechora Sea, Russian Arctic (북극 페초라해의 Side-scan Sonar 해저면 음향영상)

  • Jin, Young-Keun;Chung, Kyung-Ho;Kim, Yea-Dong;Lee, Joo-Han
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2005
  • As a study of Arctic marine survey project, Side-scan sonar survey was carried out in the Pechora Sea belonging to the southeaster part of Barents Sea. The study area is a shallow sea 11 m-16 m deep with recent sediments of rich organic carbon. Side-scan sonar profiles show large-scale marine plant communities 2-3 m wide covering the southeastern area. A lot of lineaments are traced on the seafloor in the central and northern area. The major trends of the lineaments are 220°and 290°(WSW-ENE and WNW-ESE). This trends is thought to be a main path of icebergs. Pockmarks on the seafloor are locally distributed in the area, which are formed by fluid and/or gas discharge. These would be related with petroleum/gas system well developed around the study area. Dut to weak appearances and limited distribution of the pockmarks, more detailed studies are necessary to examine their nature and structure.

  • PDF