• Title/Summary/Keyword: 해저로봇

Search Result 31, Processing Time 0.027 seconds

Finite Element Analysis of Carbon Fiber Reinforced Plastic Frame for Multi-legged Subsea Robot (다관절 복합이동 해저로봇을 위한 탄소섬유 복합소재 프레임의 구조 해석)

  • Yoo, Seong-Yeol;Jun, Bong-Huan;Shim, Hyungwon;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.65-72
    • /
    • 2013
  • This paper describes a finite element analysis (FEA) of the body frame of a subsea robot, Crabster200 (CR200). CR200 has six legs for mobility instead of screw type propellers, which distinguishes it from previous underwater robots such as remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Another distinguishing characteristic is the body frame, which is made of carbon fiber reinforced plastic (CFRP). This body frame is designed as a rib cage structure in order to disperse the applied external loads and reduce the weight. The frame should be strong enough to support many devices for exploration and operation underwater. For a reasonable FEA, we carried out specimen tests. Using the obtained material properties, we performed a modal analysis and FEA for CR200 with a ready posture. Finally, this paper presents the FEA results for the CFRP body frame and the compares the characteristics of CFRP with conventional material, aluminum.

Dynamic Tumble Stability Analysis of Seabed Walking Robot in Forward Incident Currents (전방 입사조류에 대한 해저보행로봇의 동적 전복안정성 해석)

  • Jun, Bong-Huan;Shim, Hyungwon;Yoo, Seongyeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.743-749
    • /
    • 2015
  • In this paper, we describe the dynamic tumble-stability analysis of a seabed-walking robot named Crabster (CR200) in forward-incident currents. CR200 is designed to be operated in tidal-current conditions, and its body shape is also designed to minimize hydrodynamic resistances considering hydrodynamics. To analyze its tumble stability, we adopt the dynamic stability margin of a ground-legged robot and modify the definition of the margin to consider tidal-current effects. To analyze its dynamic tumble stability, we use the estimated hydrodynamic forces that act on the robot in various tidal-current conditions, and analyze the dynamic tumble-stability margin of the robot using the estimated results obtained for the various tidal-current conditions. From the analyses, we confirm the improved tumble stability of the robot according to the movement of the tumble axis caused by the supporting points of the legs.

Integration Test of Video System for a Subsea Walking Robot CR200 (해저보행로봇 CR200을 위한 비디오 시스템의 통합 테스트)

  • Park, Sung-Woo;Kim, Bang-Hyun;Lee, Pan-Mook;Jun, Bong-Huan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.233-235
    • /
    • 2012
  • 해저보행로봇 CR200은 여러 개의 관절로 이루어진 6개의 다리를 이용하여 해저면에서 보행으로 이동하며 해저 정밀탐사 및 작업을 수행하는 로봇으로, 케이블로 연결된 선상제어실에서 원격 제어된다. CR200 시스템에서는 16개의 카메라가 장착될 예정이며, 취득된 카메라의 영상은 선상제어실의 비디오 컴퓨터로 전송되어 모니터링 및 녹화된다. 설계된 비디오 시스템에서 영상 전송은 전자기 간섭에 의한 화질 열화를 최소화하기 위하여 기가비트의 대역폭을 가진 이더넷과 광케이블을 통하여 디지털 형태로 전송되며, 아날로그 카메라의 영상은 비디오 인코더를 사용하여 디지털 영상으로 변환된 후에 전송된다. 본 논문에서는 CR200의 비디오 시스템의 설계를 소개하고, 실제로 제작하기 전에 설계된 비디오 시스템을 검증하기 위하여 테스트베드를 사용한 통합 테스트 결과를 제시한다. 아직 준비되지 않은 카메라에 대해서는 아이패드의 아날로그 영상 출력을 비디오 인코더의 입력으로 전달하여, 설계된 모든 카메라들이 동작하는 상황을 테스트베드로 실험하였다. 16개 카메라의 영상이 모니터링 및 녹화되는 상황을 테스트베드로 실험한 결과에 따르면, 압축률 10%의 H.264 동영상 압축 알고리즘을 사용할 경우에 30fps 영상의 모니터링 및 녹화에 각각 60Mbps의 전송량으로 비디오 시스템이 정상적으로 동작하는 것을 확인할 수 있었다. 비디오 데이터의 전송은 센서 및 제어 데이터의 전송과 같은 네트워크를 사용하지만, 비디오 데이터의 기가비트 네트워크 사용률은 평균 12%이기 때문에 비디오 데이터 전송으로 인하여 데이터 통신은 거의 영향을 받지 않는다.

Development of ROV Trencher URI-T and its Sea Trial (URI-T, 해저 케이블 매설용 ROV 트렌처 개발 및 실해역 성능 검증)

  • Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Ki, Geonhui;Kim, Min-Gyu;Li, Ji-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.300-311
    • /
    • 2019
  • An ROV trencher is a type of heavy-duty work class ROV equipped with high-pressure water jet tools for cutting into the sea floor and burying cables. This kind of trencher is mostly used for PLIB operations. This paper introduces the development of this kind of ROV trencher, which has a 698 kW power system, with a 250 kW hydraulic system and two 224 kW water jet systems. The project was launched in January 2014. After four years of design, manufacturing, and system integration, we carried out two sea trials near the Yeongilman port (about 20-30 m in depth) in Pohang to evaluate the system performance in November 2017 and August 2018. Through tests, we found that most of specifications were satisfied, including a maximum bury depth of 3 m, maximum bury speed of 2 km/h, and maximum forward speed of 1.54 m/s.

해외동향

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.97-9 s.178
    • /
    • pp.16-32
    • /
    • 1997
  • PDF

Driving Performance Simulation of Mining Robot for SMS deposits (해저열수광상 채광 로봇의 해저면 주행성능 시뮬레이션)

  • Lee, Chang-Ho;Kim, Hyung-Woo;Hong, Sup;Kim, Sung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.80-86
    • /
    • 2013
  • KIOST developed a deep-sea mining robot called "MineRo" to collect manganese nodules in 2007. MineRo operates on flat ground. SMS (seafloor massive sulfide) deposits are shaped like undulating mountains. This paper deals with a numerical analysis model of a mining robot for SMS deposits. The mining robot consists of a tracked vehicle, chassis structure with a turntable, boom arm with 2 articulations, excavation tool, discharging unit, hydro-electric system, and sensing-and-monitoring system. In order to compare and analyze the dynamic responses of the driving mechanism, various tracked vehicles are modeled using commercial software. Straight driving simulations are conducted under undulating ground conditions. A conceptual design of a mining robot with four track systems for SMS deposits is modeled on the basis of these results.

Finite Element Analysis of CFRP Frame under Launch and Recovery Conditions for Subsea Walking Robot, Crabster (다관절 복합이동 해저로봇에 적용된 탄소섬유 복합소재 프레임에 대한 진수 및 인양 조건에서의 구조해석)

  • Yoo, Seong-Yeol;Jun, Bong-Huan;Shim, Hyungwon;Lee, Pan-Mook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.419-425
    • /
    • 2014
  • This study applied finite element analysis (FEA) to the body frame of the 200-meter class multi-legged subsea walking robot known as Crabster (CR200). The body frame of the CR200 is modeled after the ribcage of a human so that it can disperse applied external loads. It is made of carbon-fiber-reinforced plastic (CFRP). Therefore, the frame is lighter and stronger than it would be if it were made of other conventional materials. In order to perform FEA for the CFRP body frame, we applied the material properties of the CFRP as obtained from a specimen test to an FE model of CFRP frame. Finally, we performed FEA with respect to the load conditions encountered when the robot is launched into and recovered from the sea. Also, we performed FEA for the frame, assuming that it was fabricated using a conventional material, in order to compare its characteristics with CFRP.

Slack Control for Laying a Submarine Cable (해저 케이블의 포설을 위한 여장제어)

  • Yang, Seung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.502-508
    • /
    • 2001
  • In this paper, slack is computed from a comparison of the cable pay out rate and the ship ground speed in accordance with laying conditions, and the speed controller of the cable engine based on an H(sub)$\infty$ servo control id designed for adjusting the cable engine in order to lay a desired amount of slack. The controller is designed for robust tracking of the cable engine under disturbances. The performance of the designed controller is evaluated by computer simulation, and, consequently, a feasibility study for laying the submarine cable stably is done through analyzing simulation results.

  • PDF

A Sliding Mode Controller Using Neural Network for Underwater Robot Manipulator (해저작업 로봇 매니퓰레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어기)

  • Lee, Min-Ho;Choi, Hyung-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.305-312
    • /
    • 2000
  • This paper presents a new control scheme using a sliding mode controller with a multilayer neural network for the robot manipulator operating under the sea which has large uncertainties such as the buoyancy and the added mass/moment of inertia. The multilayer neural network using the error back propagation loaming algorithm acts as a compensator of the conventional sliding mode controller to improve the control performance when the initial assumptions of uncertainty bounds are not valid. Computer simulation results show that the proposed control scheme gives an effective path way to cope with the unexpected large uncertainties in the underwater robot manipulator.

  • PDF

A Robust Neural Control of Robot Manipulator Operated Under the Sea (해저작업 로봇 매니퓰레이터의 강건한 신경망 제어기)

  • 박예구;최형식;이민호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.337-341
    • /
    • 1995
  • This paper presents a robust control scheme using a multilayer network for the robot manipulator operating under the sea which has large uncertainties such as the buoyancy and the added mass/moment of inertia. The multilayer neural network acts as a compensator of the conventional sliding mode controller to maintain the control performance when the initial assumptions of uncertainty bounds are not valid. By the computer simulation results, the proposed control scheme dose not effectively compensate large uncertainties, but also reduces the steady stare error of the conventional sliding mode controller.

  • PDF