• Title/Summary/Keyword: 해양 콘크리트

Search Result 336, Processing Time 0.025 seconds

Field Application of the Corrosion Protection Method for Marine Concrete with Nano-Silica (Nano-Sillica를 이용한 해양콘크리트 방식공법 현장 적용)

  • Kim, Kyoung-Min;Ryu, Dong-Woo;Park, Sang-Joon;Kim, Jong-Baek;Jo, Sung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.399-400
    • /
    • 2009
  • This study arranged the result corrosion inhibition using Nano-silica for efficient prevention to diffusion of chloride ion. For the results, significant difference was not found on slump and air content, and there were superior effect to preventing diffusion of chloride ion on hardened concrete. It seemed to be Nano-silica prevented diffusion of chloride ion.

  • PDF

Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System (3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향)

  • Khan, Md. Al-Masrur;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.82-92
    • /
    • 2022
  • This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure electrochemical behavior of a steel bar embedded in a concrete cube specimen, with a side length of 200 mm, in various experimental conditions. Main variables include concrete dry conditions, coupling resistance between sensing electrodes and concrete surface, and area of the counter electrode. It is demonstrated that EI values remains stable when the compliant voltage of a measuring device is sufficiently great compared to the potential drop caused by TECR of concrete specimens. It is confirmed that the effect of the coupling resistance of TECR is far more influential than other two factors (concrete dry conditions and area of the counter electrode). The results in this study can be used as a fundamental basis for development of a surface-mount sensor for corrosion monitoring of reinforced concrete structures exposed to wet-and-dry cycles under marine environment.

Failure Shape of RC Columns by The Degree of Corrosion of Reinforcement (철근부식정도에 따른 기둥의 파괴형태)

  • Song, Han-Beom;Oh, Sang-Hoon;Yi, Waon-Ho;Ryu, Hong-Sik;Kang, Dae-Eon;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.61-64
    • /
    • 2008
  • Reinforced Concrete structures are constructed under the basic assumption of perfect bonding between steel and concrete. The corrosion of steel in the reinforced concrete columns results in the excessive cracks and gradual deterioration of concrete between steel and concrete. The cyclic loading test was conducted with the three corrosion rates in the laboratory. Throughout this test, it is investigated a bond behavior of reinforced concrete columns under a steel corrosion. Main variables of the test are a corrosion of steel reinforcement and a level of stress.

  • PDF

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

An Experimental Study on the Properties of Compressive Strength of Fly Ash Replaced Antiwash out Underwater Concrete Considering Marine Environment (해양환경을 고려한 플라이애쉬${\cdot}$수중 불분리 콘크리트의 압축강도에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Jung, Hee-Hyo;Moon, Je-Kil
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • When the concrete is cast at the sea, there are lots of restrictions in the working process being different from in land, and the concrete is suffered from the physical and chemical action in terms of marine environment. The compressive strength was measured after antiwash out underwater concrete mixed with fly ash had been cast and cured in order to produce the endurable high performance concrete, and then its characteristic was discussed by comparing one cured in air with in fresh water, and the effect of fly ash usage under the properly controled sea water temperature of $15{\pm}3^{\circ}C$ was also covered. The present work showed that the proper usage of fly ash was obtained at the condition of around 10% of substituted binder weight under the structure required the early age strength, and at the condition of over 40% if considering its durability and economy.

Effect of Corrosion Level and Crack Width on the Bond-Slip Behavior at the Interface between Concrete and Corroded Steel Rebar (부식 수준 및 균열폭에 따른 부식된 철근과 콘크리트 계면의 부착-미끄러짐 거동 )

  • Sang-Hyeon Jo;Seong-Hoon Kee;Jung-Jae Yee;Changkye Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this paper, the effect of corrosion level and crack width on the cohesive strength-slip behavior of corroded steel rebar and concrete interface is conducted. The existing studies mainly focus on the decrease in bond strength with respect to the level of corrosion; there are, however, few studies on the decrease in cohesive strength according to the crack width of the concrete surface due to corrosion. Therefore, in this study, a series of tests for the cohesive strength, slip behavior and mass loss of the reinforcing bar is evaluated at the surface of corroded rebar and concrete. It is found that the tendency to decrease the bond strength is closely related to the crack width rather than the corrosion level. Hence, to determine the degradation performance for the bond strength-slip behavior relation, the occurrence of cracks on the concrete surface can be a suitable index.

Experimental Studies on the Corrosion of Reinforcement Steel in Reinforced Concrete with Corrosion Inhibitors (방식재를 사용한 철근 콘크리트의 철근부식에 관한 실험적 연구)

  • Y.S Chung;G.H Han;Lee, G.G.;J.W. Jang;Park, E.K.
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.175-183
    • /
    • 1997
  • 경제성장에 따른 항만구조물의 건설 및 유지관리에 관한 관심이 급격히 고조되고 있다. 이러한 항만구조물은 해양환경에 노출되어 콘크리트에 매입된 철근의 부식을 야기시키는 요인에 접해있다. 한편, 콘크리트 내부의 염분침투는 매입철근의 부식을 가속화시켜 콘크리트 구조물의 내구성에 상당히 큰 피해를 입힐 수 있다. 본 연구의 목적은 여러 가지 방식제를 사용함과 동시에 물/시멘트을 달리한 실험변수를 이용한 시험체에 대한 부식평가 및 매입철근의 적절한 부식방지 기법의 개발에 있다. 해양환경 조건을 simulation한 해수 및 담수 순환장치를 이용한 실내 시험체의 철근 부시도 평가 및 항만현장에 직접 거치된 시험체 등 다양한 조건하의 2년간의 실험이 현재 진행 중에 있다. 40주에 걸쳐 간헐 침투되는 해수조건에서 60개의 콘크리트 시험체의 철근 부시도 평가결과를 기초하여 180여개의 콘크리트 시험체를 새로이 제작하여 Half-Cell Test를 통한 Instant-Off Potential, Current Method를 통한 Corrosion current, Chloride Content 및 시험 종료후 시험체를 파쇄하여 부식된 철근의 무게측정등을 통하여 거동 및 부식을 예측.평가하고 이를 통한 부식방지기법을 개발하고자 한다.