• Title/Summary/Keyword: 해양 디지털 트윈

Search Result 23, Processing Time 0.021 seconds

Current Status of Domestic Marine Data Construction for Maritime Digital Twin (해양 디지털트윈을 위한 국내 해양 데이터 구축 현황)

  • Chung, Ki-Sook;Jung, Woo-Suk
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.71-72
    • /
    • 2023
  • 해양 디지털 트윈 구축을 위해서는 바다와 인접한 육상공간, 해상 및 해저 공간 등의 공간 정보와 시시각각 변하는 해양 환경 데이터, 그리고 해양 생태계 및 해양 자원 등 관련된 해양 데이터를 수집하고 이를 트윈에 적용하는 것이 필수적이다. 본 논문에서는 해양 디지털트윈 구축을 위해 필요한 해양 데이터의 국내 제공 현황을 정리하였다.

  • PDF

Concept and Construction Direction of Marine Digital Twin considering the Characteristics of Marine Information (해양정보 특성을 고려한 해양 디지털트윈 개념 및 구축방향)

  • Choi, Tae-seok;Choi, Yun-soo;Kim, Jae-myeong;Song, Hyun-Ho;Min, Byeong-heon;Lee, Sang-min
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2022
  • Digital Twin is positioned as one of the establishment of a digital management system for core infrastructure in terms of collecting real data and implementing virtual space. However, there are currently no integrated three-dimensional marine information analysis tools and technologies in Korea, and unlike land, new 3D modeling technologies and data processing technologies are required to digitize flexible marine information, but there are limitations in implementation. Therefore, this study aims to present development directions in four areas: structure, data, modeling, and utilization platform of marine digital twin by analyzing trends related to marine digital twin and digital twin technology elements.

Research on Basic Concept Design for Digital Twin Ship Platform (디지털트윈 선박 플랫폼 설계를 위한 연구)

  • Yoon, Kyoungkuk;Kim, Jongsu;Jeon, Hyeonmin;Lim, Changkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1086-1091
    • /
    • 2022
  • The International Maritime Organization is establishing international agreements on maritime safety and security to prepare for the introduction of autonomous ships. In Korea, the industry is focusing on autonomous navigation system technology development, and to reduce accidents involving coastal ships, research on autonomous ship technology application plans for coastal ships is in progress. Interest in autonomously operated ships is increasing worldwide, and maritime demonstrations for verification of developed technologies are being pursued. In this study, a basic investigation was conducted on the design of a demonstration ship and an onshore platform (remote support center) using digital twin technology for application to coastal ships. To apply digital twin technology, an 8-m small battery-powered electric propulsion ship was selected as the target. The basic design of the twin-integrated platform was developed. The ship navigation and operation data were stored on a server system, and remote-control commands of the electric propulsion ship was achieved through communication between the ship and the onshore platform. Ship performance management, operation and operation optimization, and predictive control are possible using this digital twin technology. This safe and economical digital twin technology is applicable to ships responding to crisis scenarios.

A Data Factorization Study for the Application of Digital Twin Technology to Container Ports (컨테이너 항만의 디지털 트윈 기술 적용을 위한 데이터 요인화 연구)

  • Nam, Jung-Woo;Kim, Yul-Seong;Shin, Young-Ran
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.42-56
    • /
    • 2022
  • Due to the 4th Industrial Revolution announced at the Davos Forum, the World Economic Forum, in 2016, industrial trends around the world are changing rapidly and intelligently. Among them, the digital twin is drawing attention from all industries as a groundbreaking technology that reduces unnecessary costs and trial and error by implementing real objects, systems, and environments in the same way in the real virtual world and using them to perform simulation analysis. In particular, there is a lot of interest in the application of digital twin technology in solving ports safety and efficiency challenges at once. However, there is a lack of in-depth research for the application of digital twin technology in the port, and in particular, there is a lack of research on measurable data for the implementation of the digital twin in ports. The purpose of this study was to increase granularity and connectivity through measurable data investigation for the application of digital twin technology at container ports. Based on the study results, data factors for container port application were classified into crane data, operational data, physical data, and transportation data, and factor composition, correlation with factors, and fitness were confirmed through confirmatory factor analysis.

Development of a Digital Platform for Carbon Neutrality in the Ocean (해양 탄소중립 실현을 위한 디지털 플랫폼 개발)

  • Young-Hoon Yang;Jin-Hyoung Park;Deuk-Jae Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.317-318
    • /
    • 2022
  • In accordance with global decarbonization, optimization and productivity improvement using digital twin are being sought, and software development for optimizing ship and marine energy operation is accelerating by selecting digital twin as a future core technology. In order to reduce the operating cost of ships and strengthen the competitiveness of the shipbuilding industry due to the international strengthening of regulations on carbon emissions, it is necessary to predict the carbon emission of ships in advance and provide a carbon reduction operation solution. A plan was carried out for the development of open digital platform technology and the establishment of an environment to support the securing of carbon transparency of the ship and offshore system.

  • PDF

FMEA of Electric Power Management System for Digital Twin Technology Development of Electric Propulsion Vessels (전기추진선박 디지털트윈 기술개발을 위한 전력관리시스템 FMEA)

  • Yoon, Kyoungkuk;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1098-1105
    • /
    • 2021
  • The International Maritime Organization has steadily strengthened environmental regulations on nitrogen oxides and carbon dioxide emitted from marine vessels. Consequently, the demand for electric propulsion vessels based on eco-friendly elements has increased. To this end, research and development has been steadily conducted for various vessels. In electric propulsion systems, a redundancy configuration is typically adopted to increase reliability and facilitate the onboard arrangement. Furthermore, studies have been actively conducted to ensure the safety of electric propulsion systems through the combination with digital twin technology. A digital twin can be used to predict outcomes in advance by implementing real-world equipment or space in a virtual world like twins, integrating real-world information and data with the virtual world, and performing computer simulations of situations that can occur in a real environment. In this study, we perform failure modes and effects analysis (FMEA) to validate the electric power management system (PMS) redundancy scheme for the digital twin technology development of electric propulsion vessels. Then, we propose the role and algorithm of PMS as a compensation function for preventing primary and secondary damages caused by a single equipment failure of the PMS and preventing additional damages by analyzing the impact on the entire system under real vessel operating conditions based on the redundancy FMEA suggested for the ship classification and certification. We verified the improvement in propulsion conservation through tests.