• Title/Summary/Keyword: 해양 동.식물

Search Result 92, Processing Time 0.024 seconds

Temporal and Spatial Distributions of Phytoplankton Pigment Concentration around the Korean Peninsula using Ocean Color Remote Sensing Imagery (해색위성영상을 활용한 한반도 주변 해역의 식물플랑크톤 색소농도의 시공간적 분포)

  • Kim Sang Woo;Cho Kyu Dae;Kim Young Seup;Kim Dong Sun;Choi Yoon Sun;Suh Young Sang
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.191-193
    • /
    • 2003
  • Temporal and spatial variability of phytoplankton pigment concentrations around the Korea Peninsula was described, using the monthly mean composite images of the SeaWiFS (Sea-Viewing Wide Field-of-View Sensor). The high pigment concentrations appear in the spring and fall in the East Sea The spring bloom in the southern regions (in April) occurs one month in advance in comparison with tint in the northern regions (in May). In summer season, the pigment concentrations are low all over the region in the East Sea And the high pigment concentrations exist yearly around warm stream along the coast of the East Sea, and in the coast of the West Sea and South Sea In particular, the high pigment concentrations linking near the mouth q the Yangze River to coast of South Sea in Korea appear during August to December.

  • PDF

Phytoplankton Studies In Korean Waters 1. Phytoplankton Survey Of The Surface In The Korea Strait In Summer Of 1965 (한국해역의 식물플랑크톤의 연구 1. 1965년 하계의 한국해협 표층수의 식물 플랑크톤의 양과 분포)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.1 no.1_2
    • /
    • pp.14-21
    • /
    • 1966
  • A phytoplankton study in the Korean waters has been commenced from 1964 as parts of the primary production studies in the Korean waters and the cruise for the cooperative studies of the Kuroshio from 1965 to 1968. Samples are taken by dipping 300-500 ml of sea water from the surface, and then fixed by adding neutralized formalin. The phytoplankton identification and cell counts are made on samples carefully after concentrated by decanting and centrifuging in the laboratory. This report deals with the surface phytoplankton obtained during the period of August 14-27, 1965 at twenty-three stations in the Korea Strait. Fifty nine species in seventeen genera of diatoms are detected from the samples collected at the stations. Among them seven species in five genera are considered to be purely neritic or cold water species and eight species in four genera are oceanic species of the Kuroshio. The highest phytoplankton standing crops are found in the sea area neighboring coastal waters of southern Korea, and the species distribution show anomalies in normally oceanic species being confined to neritic waters. There are distinct genera compositions of eastern, western and intermediate sea areas in the Kore Strait.

  • PDF

Occurrence Patterns of Zooplankton Present in Ports of Korea during Summer (한국 주요 항에 출현하는 하계 동물플랑크톤 군집 특성)

  • Seo, Min Ho;Shin, Kyeongsoon;Jang, Min-Chul;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.448-457
    • /
    • 2013
  • Zooplankton community in the major ports of Korea, which were characterized by a specific marine environmental condition during summer, was studied. Water temperature in the ports of western areas was higher and while those in the East Sea was lower. Contradictorily, the salinity was lowest in the western areas, while being highest in the eastern area. The Chl-a concentration was highest in the southern areas and lowest in the eastern one. Zooplankton taxa were most diverse in the western areas and simplest in the eastern one. Copepods predominantly occurred in the western areas, but their abundance relatively decreased in the southern and eastern areas. Cluster analysis revealed that copepod communities were classified into 3 summit groups, the western, southern and eastern areas. The results indicate that zooplankton communities in Korean ports may be affected by biological factors like Chl-a concentration in addition to environmental factor such as temperature and salinity.

Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016 (2016년 춘계 울릉도-독도주변해역에서 동해 연안 용승과 시간차에 의한 일차생산력 영향)

  • Baek, Seung Ho;Kim, Yun-Bae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.156-164
    • /
    • 2018
  • In order to investigate the upwelling and island effects following the wind storm events in the East Sea (i.e., Uljin-Ulleungdo-Dokdo line) during spring, we assessed the vertical and horizontal profiles of abiotic and biotic factors, including phytoplankton communities. The assessment was based on the Geostationary Ocean Color Imager (GOCI) and field survey data. A strong south wind occurred on May 3, when the lowest sea level pressure (987.3 hPa) in 2016 was observed. Interestingly, after this event, huge blooms of phytoplankton were observed on May 12 along the East Korean Warm Current (EKWC), including the in the offshore waters of Ulleungdo and Dokdo. Although the diatoms dominated the EKWC area between the Uljin coastal waters and Ulleungdo, the population density of raphidophytes Heterosigma akashiwo was high in the offshore waters of Ulleungdo-Dokdo. Based on the vertical profiles of Chlorophyll-a (Chl. a), the sub-surface Chl. a maximum appeared at 20 m depths between Uljin and Ulluengdo, whereas relatively high Chl. a was distributed equally across the entire water column around the waters of Ulleungdo and Dokdo islands. This implies that the water mixing (i.e., upwelling) at the two islands, that occurred after the strong wind event, may have brought the rapid proliferation of autotrophic algae, with nutrient input, to the euphotic layer. Therefore, we have demonstrated that a strong south wind caused the upwelling event around the south-eastern Korean peninsula, which is one of the most important role in occurring the spring phytoplankton blooms along the EKWC. In addition, the phytoplankton blooms may have potentially influenced the oligotrophic waters with discrete time lags in the vicinity of Ulleungdo and Dokdo. This indicates that the phytoplankton community structure in the offshore waters of Ulleungdo-Dokdo is dependent upon the complicated water masses moving related to meandering of the EKWC.

Seawater N/P ratio of the East Sea (동해 해수의 질소:인의 비)

  • LEE, TONGSUP;RHO, TAE-KEUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.199-205
    • /
    • 2015
  • Nitrogen and phosphorus are the limiting elements for growth of phytoplankton, which is a major primary producer of marine ecosystem. Incidentally the stoichiometry of N/P of ocean waters, measured by the (nitrate + nitrite)/phosphate ratio converges to a constant of 16. This characteristic ratio has been used widely for the understanding the ecosystem dynamics and biogeochemical cycles in the ocean. In the East Sea, several key papers were issued in recent years regarding the climate change and its impact on ecosystem dynamic and biogeochemical cycles using N/P ratio because the East Sea is a "miniature ocean" having her own meridional overturning circulation with the appropriate responding time and excellent accessibility. However, cited N/P values are different by authors that we tried to propose a single representative value by reanalyzing the historical nutrient data. We present N/P of the East Sea as $12.7{\pm}0.1$ for the year 2000. The ratio reveals a remarkable consistency for waters exceeding 300m depth (below the seasonal thermocline). We recommend to use this value in the future studies and hope to minimize confusion for understanding ecosystem response and biogeochemical cycles in relation to future climate change until new N/P value is established from future studies.

Evaluation of Grinding Effects on the Extraction of Photosynthetic Pigments for HPLC Analysis (광합성 색소의 HPLC 분석을 위한 여과지 분쇄 효과 평가)

  • Jang, Su Jin;Park, Mi Ok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.2
    • /
    • pp.71-77
    • /
    • 2015
  • High-Performance Liquid Chromatography (HPLC) is a widely used method for measuring the concentration of chlorophyll a as an indicator for estimating phytoplankton biomass and primary production and also for identifying carotenoids to determine phytoplankton composition. However, tissue grinding procedure requires a lot of time and experience in the analysis of multiple sample. Accordingly, we measured the concentrations of photosynthetic pigments before and after the grinding, in order to understand the grinding effects on the quantitative analysis of chlorophylls and carotenoids using samples from southwestern East Sea. When tissue grinding procedure was omitted, we found that Chl a concentrations were underestimated up to 45% in average. Also, concentrations of Zeaxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, biomarkers of pico and nano-size phytoplankton, were underestimated up to maximum 77~85% without grinding. We found that the smaller the phytoplankton, the bigger underestimation of their biomarker pigments concentration is likely to happen due to the incomplete extraction. Thus, tissue grinding procedure should be included for HPLC analysis in all cases, to prevent the underestimation of not only Chl a but also carotenoids pigments.

Seasonal Changes of Community Structure of Phytoplankton in Three Korean Seagrass Beds (한국연안 3개 해초지 표층수에서 식물플랑크톤 군집구조의 계절 변화)

  • Lee, Sang-Yong;Lee, In-Woo;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.95-105
    • /
    • 2006
  • To clarify the seasonal changes of the phytoplankton community in seagrass beds, the abundance and distribution of phytoplankton, and environmental factors were measured in seagrass beds: in the Dongdae Bay and Aenggang Bay on the southern coast of Korea, and off Seungbong Island on the western coast of Korea, in October 2002, January, March, and June 2003. Water temperature, salinity, SPM, chlorophyll a, aboveground biomass of seagrass, DIN and DIP concentrations significantly changed within the sampling time. The taxa of phytoplankton observed in seagrass beds were classified as 3 divisions, 3 classes,4 orders,16 families, 27 genera, 65 species. 50 species of diatoms were recognized with 14 species of dinoflagellates, and 1 species of silicoflagellate. The species of genera Coscinodiscus and Thalassiosira were dominant all around the study areas but Peridinium granii, Eucampia zodiacus and Pleurosigma elongatum were seasonally dominant. Phytoplankton standing crops varied from minimum of $0.6{\times}10^3\;cells\;l^{-1}$ (June, Dongdae Bay) to maximum$21.1{\times}10^3\;cells\;l^{-1}$(March, Aenggang Bay). The standing crops and species composition of phytoplankton were relatively lower and simpler than those of other southern and western coastal areas. Seasonal variations of diatom standing crops in seagrass beds were attributed to seasonal changes in DIN and in DIP of water column.

The Seasonal and Regional Distribution of Phytoplankton Communities in the Fisheries Resources Protection Area of Korea in 2016 (2016년 한국 수산자원보호해역에서 식물플랑크톤 군집의 계절 및 해역별 분포)

  • Yoo, Man Ho;Park, Kyung Woo;Oh, Hyun Ju;Koo, Jun Ho;Kwon, Jung No;Youn, Seok Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.288-293
    • /
    • 2018
  • This study was conducted to understand the characteristics of the seasonal and regional distribution of phytoplankton communities in the Fisheries Resources Protection Area of Korea (FRPA). We investigated the phytoplankton composition, abundance and dominant species collected from five different regions (Cheonsu, Tongyeong-I, Tongyeong-II, Hansan, and Jindong) in 2016. According to the results, most environmental parameters, such as temperature, salinity and nutrients, showed statistically significant seasonal differences. Suspended particulate material (SPM) only showed a statistically significant regional difference. The mean abundance of phytoplankton ranged from 13 to $4,062cells{\cdot}ml^{-1}$, with large spatio-temporal fluctuations. In particular, the bloom of phytoplankton (>$10^3cells{\cdot}ml^{-1}$) in Cheonsu Bay occurred in April and October with Skeletonema spp. and Chaetoceros socialis being the dominant species during these two seasons, respectively. The dominant species in the FRPA were diatoms (Pseudo-nitzschia spp., Skeletonema spp., and Chaetoceros pseudocriniuts) and dinoflagellates (Scrippsiella trochoidea and Tripos furca). The seasonal distribution of phytoplankton communities showed typical characteristics of coastal waters, i.e., that diatoms usually dominated in winter and autumn, while dinoflagellates tended to dominate in spring and summer. Meanwhile, the dominance rate of diatoms in the phytoplankton community in Cheonsu Bay, which is located in a high-turbidity region, was 9~27 % greater than that of diatoms in the phytoplankton community found in the south coastal waters, which is a low turbidity region.

Changes in phytoplankton size structure in the East Sea 2018-2020 due to marine environment change (해양환경 변화로 인한 2018~2020년 동해 식물플랑크톤 크기 구조 변화)

  • Kyung Woo Park;Hyun Ju Oh;Jae Dong Hwang;Su Yeon Moon;Min Uk Lee;Seok Hyun Youn
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.54-69
    • /
    • 2022
  • We conducted a field survey from 2018 to 2020 to analyze the spatial distribution of phytoplankton communities at 13 stations in the East Sea. The diatom Chaetoceros curvisetus appeared as the dominant species in winter, and small flagellates less than 20 ㎛ prevailed in all seasons except winter. The seasonal average range of the micro (>20 ㎛), nano (20 ㎛≥Chl-a>3 ㎛), and picophytoplankton (≤3 ㎛) was 20.6-26.2%, 27.1-35.9%, and 40.8-49.0%, respectively. The composition ratio of nano and picophytoplankton was high at the surface mixed layer from spring to autumn when the water columns were strongly stratified. Especially, the stability of the water mass was increased when the summer surface water temperature was higher than that of the previous year. As a result, the nutrient inflow from the lower layer to the surface was reduced as the ocean stratification layer was strengthened. Therefore, the composition ratio of nano and picophytoplankton was the highest at 77.9% at the surface mixed layer. In conclusion, the structure of the phytoplankton community in the East Sea has been miniaturized, which is expected to form a complex microbial food web structure and lower the carbon transfer rate to the upper consumer stage.

Implications of Deep Nitrite in the Ulleung Basin (울릉 분지 저층수의 아질산염)

  • Lee, Tong-Sup;Kim, Il-Nam;Kang, Dong-Jin;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.239-243
    • /
    • 2007
  • Presence of bottom water nitrite in the Ulleung Basin was remarkable because it is totally unexpected phenomenon at such an oxygen-rich environment. Yet no scientific explanation was set forward. Of several plausible explanations, following the Ockham's suggestion, a leaching of nitrite as an intermediate product of denitrification in the top sediment at the slope is most agreeable to given environmental settings. There seems no complementary process to make up the loss of N in the Ulleung Basin, which seems contribute to the characteristically low N:P ratio in the deep waters. If warming proceeds that weakens the thermohaline circulation, a current biological pump may stall and the phytoplankton assemblage might replaced drastically. If so this will pause an utmost challenge to the ecosystem of the East/Japan Sea. Still there remains a contradictory sedimentary signature that requests further explanation regarding the N (or organic C)-cycle such as extraordinarily high organic carbon content despite abundant oxidants in the overlying waters.