Kim, Dong Kwan;Kim, Chang Dong;Kim, Soo Hyun;Cho, Hye Bin;Jin, Ji Yeon;Jang, Yoon Ho
Proceedings of the Korean Society of Computer Information Conference
/
2020.01a
/
pp.175-176
/
2020
본 논문에서는 가상 현실 기기를 이용하여 스택, 큐, 트리 등과 같은 복잡한 자료구조에 대한 학습을 도와주는 학습 지원 시스템을 제안한다. 컴퓨터 프로그래밍에서 적절한 자료구조를 선택함으로써 보다 효율적인 알고리즘을 구현할 수 있으며 프로그램 실행시간, 메모리 용량과 같은 컴퓨팅 자원을 효율적으로 사용할 수 있다. 본 논문에서 제안하는 EZ 학습 시스템은 비전공자의 자료구조 학습에 도움을 주며 특히, 스마트 폰 기반의 가상 현실 기기를 사용하여 학습자의 흥미를 유발하고자 한다. 학습자는 가상공간을 통해 정보를 보다 쉽게 받아들이고, 게임적인 요소를 통해 학습에 대한 집중도를 높일 수 있을 것으로 기대된다. EZ 학습 시스템은 스택 자료형에 대한 개념 설명, 스택 연산자 학습, 미로 탐색을 통한 스택 응용 사례를 제공한다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2019.05a
/
pp.3-4
/
2019
본 논문에서는 복잡한 해상교통 환경 하에서도 해양 안전을 도모할 수 있는 강화학습 기반 지능형 선박 항해 에이전트 개발의 사전단계로서 기존의 강화학습 환경을 분석하였다. 강화학습 기반 접근법은 선박 항해 에이전트 스스로가 복잡하고 동적인 해상교통 환경을 이해하고 주어진 목표를 달성할 수 있도록 도와주는데, 이를 위해서는 에이전트 자신을 제외한 모든 사항들이 정의되는 환경을 보다 정확하고 효과적으로 개발하는 것이 매우 중요하다. 실제 해상교통 환경은 학습 환경으로의 모델링 및 에이전트 학습의 난이도가 매우 높은 환경으로 학습환경이 가질 수 있는 여러 속성들을 적절히 설정하여 선박 항해 에이전트의 활용 목적에 맞는 가성비 높은 환경을 구축하는 것이 바람직하다.
Min-Kyu Kim;Jong-Hwa Kim;Ik-Soon Choi;Hyeong-Tak Lee;Hyun Yang
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.167-168
/
2022
선박을 운항함에 있어 최적항로를 결정하는 것은 항해시간과 연료 소모를 줄이는 중요한 요인 중의 하나이다. 기존에는 항로를 결정하기 위해 항해사의 전문적인 지식이 요구되지만 이러한 방법은 최적의 항로라고 판단하기 어렵다. 따라서 연료비 절감과 선박의 안전을 고려한 최적의 항로를 생성할 필요가 있다. 연료 소모량 혹은 항해시간을 최소화하기 위해서 에이스타 알고리즘, Dijkstra 알고리즘을 적용한 연구가 있다. 하지만 이러한 연구들은 최단거리만 구할 뿐 선박의 안전, 해상상태 등을 고려하지 못한다. 이를 보완하기 위해 본 연구에서는 강화학습 알고리즘을 적용하고자한다. 강화학습 알고리즘은 앞으로 누적 될 보상을 최대화 하는 행동으로 정책을 찾는 방법으로, 본 연구에서는 강화학습 알고리즘의 하나인 Q-learning을 사용하여 선박의 안전을 고려한 최적의 항로를 생성하는 기법을 제안 하고자 한다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.165-166
/
2022
최근 전세계적으로 자율운항선박(Maritime Autonomous Surface Ship, 이하 MASS)의 기술 개발 및 시험 항해가 본격적으로 추진되고 있다. 하지만 MASS의 출현과 별개로 운항 방식, 제어 방식, 관제 방식 등 명확한 지침은 부재한 상태이다. 육상에서는 머신 러닝을 통하여 자율주행차에 대한 다양한 제어 방식을 연구하고 있으며, 이에 따라서 MASS도 제어 또는 통항 방식에 대한 기초 틀을 마련할 필요성이 있다. 하지만 육상과 달리 해상은 기상, 조종성능, 수심, 장애물 등 다양한 변수들이 존재하고 있어 접근 방식이 복잡하여, 머신 러닝을 적용할 때 환경에 대한 요소를 적절하게 설정해야 한다. 따라서 본 연구는 멀티 에이전트 강화학습을 통하여 MASS의 자율적인 통항 방식을 제안하기 위하여 강화학습의 해상교통환경 설정을 위한 요소를 도출하고자 하였다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2019.05a
/
pp.87-88
/
2019
자율운항선박 개념이 등장함에 따라 이를 관제하는 해상교통관제에도 선박 변화에 따른 대응이 필요하다. 본 연구의 목적은 인공지능의 한 분야인 기계학습을 통해 해상교통관제사가 교통 관리를 위해 선박에게 교신을 시작하는 시점을 일반화하는 것이다. 이를 위해 부산 북항의 7일간 교신 시작 시점 데이터를 이용해 알고리즘을 개발했다.
The marine life culture contents added with fun and learning factors are created in a 3D space, and the development of augmented reality contents concerning marine life resources in islands and the utilization method of experience-based learning are proposed. As a WYSIWYG-based authoring tool, an augmented reality authoring tool was made to easily use a authoring tool through a node structure and drag & drop. Marine life contents add the animation effect through a marker and event factors such as the change of modeling data, and also, they support real experience-based learning with the narration of marine life. Based on around 50 species of marine animals augmented reality contents, a marine animal AR book can be utilized as a textbook for elementary school classes, and as a 3D image education utilizing augmented reality, it enhances a learning effect by allowing realistic observation, various ways of thinking, and the maximum flow.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.418-420
/
2020
해양에서의 선박사고 발생 횟수는 매년 꾸준히 증가하고 있다. 한국해양안전심판원에서는 이러한 사례들의 판결을 관련 인력들이 공유할 수 있도록 재결서를 제작하여 발간하고 있다. 그러나 선박사고는 2019년 기준 2,971건이 발생하여, 재결서만으로 관련 인력들이 다양한 사건들의 판례를 익히기엔 어려움이 따른다. 따라서 본 논문에서는 문장 표상 기법을 이용한 다중 작업 학습을 이용하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하는 실험을 진행하였다. USE, KorBERT 두 가지의 모델을 2010~2019년 재결서 데이터로 학습하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하였으며 그에 따른 정확도를 비교한 결과, KorBERT 문장 표상을 사용한 분류 모델이 가장 정확도가 높음을 확인했다.
Proceedings of the Korean Society of Fisheries Technology Conference
/
2000.10a
/
pp.33-34
/
2000
수중음향기술은 어업에 있어서 초음파를 이용한 어군탐지와 해양관측조사는 물론 수중가청음을 이용한 어군의 유집, 위협, 치자어의 수중음학습에 의한 어류의 양식 등 여러면으로 응용되고 있다. 수중가청음을 이용한 음향순치는 해양목장화사업에서 어류가 민감한 행동반응을 보이는 것으로 확인되고 있으며 생물의 조건반사를 이용하여 어류의 학습시키고 학습된 어류를 육성하는 수준까지 발전하고 있다. (중략)
This study aims to empirically validate the relationship between organizational learning transfer climate and the transfer of training and to enhance the transfer of training among South Korean coast guards. The empirical data was collected through 526 South Korean coast guards admitted to the institute, and support by managers and peers, and potential for organizational change were selected as independent variables for multiple regression. As a result, the transfer of training is positively correlated with support of mangers and peers, and potential for organizational change, thus suggesting factors like supervisor participation and long-term educational planning as policy implications for the effective transfer of training to work environment. Though findings from research cannot be generalized to the broader population due to limitations of sampling, this study does find its significance in that organizational learning transfer climate was considered as a key factor influencing the transfer of learning for the first time.
Kim, Hyeon-Jae;Kim, Dong-Hoon;Lim, Chaewook;Shin, Yongtak;Lee, Sang-Chul;Choi, Youngjin;Woo, Seung-Buhm
Journal of Korean Society of Coastal and Ocean Engineers
/
v.33
no.6
/
pp.265-274
/
2021
Outlier detection research in ocean data has traditionally been performed using statistical and distance-based machine learning algorithms. Recently, AI-based methods have received a lot of attention and so-called supervised learning methods that require classification information for data are mainly used. This supervised learning method requires a lot of time and costs because classification information (label) must be manually designated for all data required for learning. In this study, an autoencoder based on unsupervised learning was applied as an outlier detection to overcome this problem. For the experiment, two experiments were designed: one is univariate learning, in which only SST data was used among the observation data of Deokjeok Island and the other is multivariate learning, in which SST, air temperature, wind direction, wind speed, air pressure, and humidity were used. Period of data is 25 years from 1996 to 2020, and a pre-processing considering the characteristics of ocean data was applied to the data. An outlier detection of actual SST data was tried with a learned univariate and multivariate autoencoder. We tried to detect outliers in real SST data using trained univariate and multivariate autoencoders. To compare model performance, various outlier detection methods were applied to synthetic data with artificially inserted errors. As a result of quantitatively evaluating the performance of these methods, the multivariate/univariate accuracy was about 96%/91%, respectively, indicating that the multivariate autoencoder had better outlier detection performance. Outlier detection using an unsupervised learning-based autoencoder is expected to be used in various ways in that it can reduce subjective classification errors and cost and time required for data labeling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.