• Title/Summary/Keyword: 해양플랜트장비

Search Result 73, Processing Time 0.023 seconds

A Development of Welding Information Management and Defect Inspection Platform based on Artificial Intelligent for Shipbuilding and Maritime Industry (인공지능 기반 조선해양 용접 품질 정보 관리 및 결함 검사 플랫폼 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Woo, Yun-Tae;Yoon, Young-Wook;Shin, Sung-chul;Oh, Sang-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-201
    • /
    • 2021
  • The welding has a high proportion of the production and drying of ships or offshore plants. Non-destructive testing is carried out to verify the quality of welds in Korea, radiography test (RT) is mainly used. Currently, most shipyards adopt analog-type techniques to print the films through the shoot of welding parts. Therefore, the time required from radiography test to pass or fail judgment is long and complex, and is being manually carried out by qualified inspectors. To improve this problem, this paper covers a platform for scanning and digitalizing RT films occurring in shipyards with high resolution, accumulating them in management servers, and applying artificial intelligence (AI) technology to detect welding defects. To do this, we describe the process of designing and developing RT film scanning equipment, welding inspection information integrated management platform, fault reading algorithms, visualization software, and testing and verification of each developed element in conjunction.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

A study on the development of a ship-handling simulation system based on actual maritime traffic conditions (선박조종 시뮬레이터를 이용한 연안 해역 디지털 트윈 구축에 연구)

  • Eunkyu Lee;Jae-Seok Han;Kwang-Hyun Ko;Eunbi Park;Kyunghun Park;Seong-Phil Ann
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.200-201
    • /
    • 2023
  • Digital twin technology is used in various fields as a method of creating a virtual world to minimize the cost of solving problems in the real world, and is also actively used in the maritime field, such as large-scale systems such as ships and offshore plants. In this paper, we tried to build a digital twin of coastal waters using a ship-handling simulator. The digital twin of the coastal waters developed in this way can be used to safely manage Korea's coastal waters, where maritime traffic is complicated, by providing a actual maritime traffic data. It can be usefully used to develop and advance technologies related to maritime autonomous surface ships and intelligent maritime traffic information services in coastal waters. In addition, it can be used as a 3D-based monitoring equipment for areas where physical monitoring is difficult but real-time maritime traffic monitoring is necessary, and can provide functions to safely manage maritime traffic situations such as aerial views of ports/control areas, bridge views/blind sector views of ships in operation.

  • PDF