• Title/Summary/Keyword: 해양지질자료

Search Result 128, Processing Time 0.041 seconds

Digital Processing for Multichannel Seismic Data(I) -Marine Reflection Data Processing- (다중채널 탄성파 탐사자료의 전산처리(I) - 해양반사파 자료처리 -)

  • 김기영;홍종국;주형태
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.85-108
    • /
    • 1991
  • Marine seismic processing is characterized by a great amount of data, several professional processing steps, and various parameters to be decided in each step. In general, adequate processing sequence and optimum parameters are obtained through test processing with sample set of data representing the whole group. The sequence and parameters are then applied in processing the whole data. In this paper, optimum processing sequence and parameters for the data acquired in Korean continental shelf are examined through test processing with real data. Finally, a good-quality migration section is produced using those sequence and parameters decided on the basis of the test results.

  • PDF

Development of an Integrated DataBase System of Marine Geological and Geophysical Data Around the Korean Peninsula (한반도 해역 해양지질 및 지구물리 자료 통합 DB시스템 개발)

  • KIM, Sung-Dae;BAEK, Sang-Ho;CHOI, Sang-Hwa;PARK, Hyuk-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.47-62
    • /
    • 2016
  • An integrated database(DB) system was developed to manage the marine geological data and geophysical data acquired from around the Korean peninsula from 2009 to 2013. Geological data such as size analysis data, columnar section images, X-ray images, heavy metal data, and organic carbon data of sediment samples, were collected in the form of text files, excel files, PDF files and image files. Geophysical data such as seismic data, magnetic data, and gravity data were gathered in the form of SEG-Y binary files, image files and text files. We collected scientific data from research projects funded by the Ministry of Oceans and Fisheries, data produced by domestic marine organizations, and public data provided by foreign organizations. All the collected data were validated manually and stored in the archive DB according to data processing procedures. A geographic information system was developed to manage the spatial information and provide data effectively using the map interface. Geographic information system(GIS) software was used to import the position data from text files, manipulate spatial data, and produce shape files. A GIS DB was set up using the Oracle database system and ArcGIS spatial data engine. A client/server GIS application was developed to support data search, data provision, and visualization of scientific data. It provided complex search functions and on-the-fly visualization using ChartFX and specially developed programs. The system is currently being maintained and newly collected data is added to the DB system every year.

Construction of Korea Remote Sensing Center's Homepage and it's Operation (공공원격탐사센터 홈페이지 구축 및 운용)

  • 임효숙;김용승;김윤수;김인수;서두천;이광재;이선구
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.15-20
    • /
    • 2003
  • 한국항공우주연구원은 공공기술연구회 산하 한국지질자원연구원, 한국해양연구원, 한국건설기술연구원과 협력하여 2002년 4월 17일에 본격적인 원격탐사 연구 및 공공지원 업무의 주축을 담당하게 될 공공원격탐사센터를 설립하였다. 별도의 독립조직이 아니라 원격탐사위성인 아리랑위성을 개발, 운영하고 있는 한국항공우주연구원을 중심으로, 한국해양연구원, 한국지질자원연구원, 한국건설기술연구원등 관련기관이 해양분야, 지상분야, 건설분야 등 각 전문분야 별로 협동연구 체계를 구축, 실질적인 국가원격탐사센터 역할을 수행할 것이다. 이와 같이 설립된 공공원격탐사센터에 대한 홍보, 위성자료의 공공활용 지원 및 원격탐사 Tutorial 등을 사용자들이 쉽게 접속하여 이용할 수 있도록 공공원격탐사센터 홈페이지를 구축하여 Open 하게 되었다. 공공원격탐사센터 본부인 한국항공우주연구원을 비롯하여 전문센터별로도 홈페이지를 구축하여 서로 연결되도록 하였다. 2003년도에는 이와 같이 open 된 홈페이지에 위성자료 통합 DB를 구축하여 서비스할 예정이다.

  • PDF

Extraction kaolin minesin Hadong Area using ASTER image (ASTER 영상 자료를 이용한 하동지역 고령토 광산 분포 추출)

  • LEE, Hong-Jin;KIM, In-Joon;PARK, Maeng-Eon;CHI, Kwang-Hoon;BAEK, Seung-Gyun;KO, Kyoungtae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.121-131
    • /
    • 2014
  • This study analyzed the spectral reflectance characteristics of kaolinite and ASTER(Advanced Spaceborne Thermal Emission and Reflectance Radiometer) image to extract the distribution of kaolin mines in Hadong area, Gyeongsangnam-do. The band ratio model was applied to extract kaolinite using difference of wavelength absorption band distinct feature of minerals from ASTER image which is the major mineral of kaolin mines. According to the spectral reflectance curve of kaolinite, it showed the absorption features around 0.96 and $2.18{\mu}m$ by Al-OH. Also, it affected 1.24 and $1.38{\sim}1.41{\mu}m$ by OH. Applying for new band ratio model from the spectral features of kaolinite to ASTER image, it is possible to make the distribution map of mining traces including present- developing kaolin mines.

Data Acquisition Method for Marine Geophysical Survey (해양물리탐사 자료취득 기법)

  • Han, Hyun-Chul;Park, Chan-Hong
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.417-426
    • /
    • 2006
  • Data acquisition is as important as data processing and interpretation in the field of marine geophysical exploration. Marine geophysicist, however, may not have enough information in this field because data acquisition method has been mainly developed by the commercial companies manufacturing the equipment. Therefore, the purpose of this paper is to introduce the general data acquisition method and information to help to construct the systematic and effective survey plan. When a survey plan is set up, the most important thing is to select the seismic equipment based on required penetration depth and resolution, and then construct the survey line intervals. Although a line interval varies from the research purposes, it should be narrower than the expected subsurface structures. Also, if 100% coverage of multibeam data is required, line intervals need to be adjusted based on the equipment characteristics. In case of merging with the preexisting dataset like bathymetry, gravity and magnetic, cross-over errors occurred at the each cross point should be removed to avoid any kinds of misinterpretation.

FastXcorr : FORTRAN Program for Fast Cross-over Error Correction of Marine Geophysical Survey Data (FastXcorr : 해양지구물리탐사 자료의 빠른 교차점오차 보정을 위한 프로그램 개발)

  • Kim, Kyong-O;Kang, Moo-Hee;Gong, Gee-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.219-223
    • /
    • 2008
  • Many cross-over errors due to position errors, meter errors, observation errors, sea conditions and so on occur when marine geophysical data collected by own and other agencies are merged, and these errors can create artificial anomalies which cause an improper interpretation. Many methods have been introduced to reduce cross-over errors. However, most methods are designed to compare each point or segment data to find cross-over points, and require a long processing time. Therefore, FORTRAN program (FastXcorr) is presented to fast determine cross-over points using an overlap-sector, and to adjust cross-over errors using a weighted linear interpolation algorithm.

A Review on the Quality Control of Marine Fish Data (해양어류 자료의 정도관리에 대한 고찰)

  • LEE, HWAHYUN;SOHN, DONGWHA;KIM, SUAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.277-289
    • /
    • 2021
  • Among various data types obtained from the ocean, the quality controls for abiotic data collected from chemical, physical, and geological field surveys haves already been partially established. Due to the difficulties in standardization of the data collections and basic analyses, however, the quality controls of biotic data are in its early stage. For marine fish, the necessity of quality control is more demanded due to the wide range of data usage, but there are currently no consistent quality control guidelines because of the diversity and scope of data types derived from species-specific and age-specific information throughout various habitats. In this paper, we provide examples of marine fish data utilization and also show methods of the marine fish data collection, limitations of the data collection methods, and suggestions for improving the marine fish data quality. We hope this paper will help to establish the direction of quality control for marine fish data from both fishery-dependent and fishery-independent surveys in Korea in the near future.