• Title/Summary/Keyword: 해양드론

Search Result 74, Processing Time 0.028 seconds

Ulsan-Port safety management solution & virtual-reality simulation with 5G and water drone (5G 및 수상드론을 통한 울산항 안전운항 관리 솔루션 및 가상현실 시뮬레이션)

  • Kim, Seongyeon;Kim, Yeonjin;Kim, Jeongsu;Hwang, Jhunho;Kim, Jeongmin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.1118-1121
    • /
    • 2020
  • 전체 해양 사고 원인 중 선박 운항 부주의가 34%로 사고 발생 원인 중 대다수를 차지한다. 해당 문제를 해결하기 위해서는 선박 운항자를 대상으로 효과적인 운항 교육 및 실시간 관제 시스템을 제공해 사고를 방지하는 것이 중요하다. 따라서 울산항만을 현실적으로 반영한 가상현실 시물레이션 및 5g 수상드론을 이용한 운항 교육 시스템과 모든 선박들이 사용가능한 실시간 관제 시스템을 연구하고 이를 울산 항만에 제공한다.

A Study on the Shapes of Twin Curvy Sail for Unmanned Sail Drone (무인세일드론의 트윈커브세일 형상에 관한 연구)

  • Ryu, In-Ho;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1059-1066
    • /
    • 2021
  • In Korea, the importance of marine activities is great, and automatic weather observation facilities are operating on land to investigate abnormal weather phenomena caused by industrialization; however, the number of facilities at sea is insufficient. Marine survey ships are operated to establish marine safety information, but there are many places where marine survey ships are difficult to access and operating costs are high. Therefore, a small, unmanned vessel capable of marine surveys must be developed. The sail has a significant impact on the sailing performance, so much research has been conducted. In this study, the camber effect, which is a design variable of the twin curvy sail known to have higher aerodynamic performance than existing airfoil shapes, was investigated. Flow analysis results for five cases with different camber sizes show that the lift coefficient is highest when the camber size is 9%. Curvy twin sails had the highest lift coefficient at an angle of attack of 23° because of the interaction of the port and starboard sails. The port sail had the highest lift coef icient at an angle of attack of 20°, and the starboard sail had the lowest lift coef icient at an angle of attack of 15°. In addition, the curvy twin sail had a higher lift coefficient than NACA 0018 at all angles of attack.

무인선 군집 자율운항 실해역 시험에 관한 연구

  • 손남선;이재용;표춘선;박한솔
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.184-185
    • /
    • 2022
  • 국제해사기구(IMO)에서는 2017년 미래선박으로서 자율운항선박(MASS)의 개념을 채택한 바 있으며, 실해역 운항을 위한 국제법규 및 규정 검토를 진행하고 있다. 무인선은 악천후시 유인선이 수행하기 힘든 임무를 대체하거나 지원하기 위하여 원격 혹은 자율적으로 운용되는 일종의 소형 자율운항선박을 의미한다. 선박해양플랜트연구소에서는 2011년부터 해양수산부 연구개발사업을 통하여, 무인선 아라곤호 시리즈를 개발하였으며, 아라곤1호, 2호, 3호 등 총 3척을 운용하고 있다. 해당 선박은 길이 8미터, 배수량 약 3톤급의 활주선형으로 원격운항, 경로추종 및 충돌회피 등 자율운항 기능이 적용되어 있다. 한편, 무인선은 공중 드론과 달리 탑재중량이 크고, 항속시간이 길어 해상에서 감시,첩보, 정찰 등에 효용성이 높으며, 최근 한척보다는 여러 척을 운용하는 것이 효과적이어서 무인선 군집(USV Swarm)으로 해상임무를 수행하려는 연구가 다양하게 진행되고 있다. 선박해양플랜트연구소에서는 2019년부터, 기존의 아라곤호 시리즈 무인선들을 활용하여, 무인선 군집 자율운항 시스템 개발을 위한 "인공지능 기반 무인선 상황인식 및 자율운항 기술 개발" 과제를 진행하고 있다. 해상에서 불법선박이 출현시 이를 효과적으로 단속하기 위하여 추적 기동이 필요한데, 본 연구에서는 무인선 3척을 활용하여 불법선박을 추적하는 해상 감시 실해역 시험을 수행하였다. 본 논문에서는 무인선 군집 자율운항 시스템에 대하여 소개하고, 무인선 군집을 활용한 불법선 추적에 관한 실해역 시험결과에 대해 소개한다.

  • PDF

Measurement and Analysis of 433 MHz Radio Wave for Drone Operation (드론 운용을 위한 433 MHz 전파 측정 및 분석)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.209-213
    • /
    • 2023
  • Currently, 2.4 GHz and 5 GHz bands are used as frequencies for drone operation. In December 2019, the Ministry of Science and ICT newly allocated the 433 MHz band for the invisible long-distance operation of drones. However, since the 433 MHz band is the same as the previously allocated frequency band for amateur radio communication, interference cannot be avoided. Therefore, as a prerequisite for the development of a drone operation system based on the 433 MHz band, interference avoidance technology for this frequency band must be developed and applied. In this paper, we report the results of measurement and analysis of 433 MHz band signals necessary for the development of interference avoidance and reduction technologies for 433 MHz signals. The measurement and analysis of the 433 MHz band signal are performed through the spectrum measured at 5-minute intervals at three locations. Since the measurements and analyzes performed in this study considered spatial characteristics, temporal characteristics, and traffic characteristics, it is considered to be the basic data necessary for the development of interference avoidance technology in the 433 MHz band.

UAV-based Construction Site Monitoring and Analysis System Development for Civil Engineering Management (토목현장에서의 무인비행장치 기반 현장정보 취득 및 분석 시스템 개발)

  • Kim, Changyoon;Youn, Junhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.549-557
    • /
    • 2022
  • Due to harsh conditions of construction site, understanding of current feature of terrain and other infrastructures is critical issue for site managers. However, because of difficulties in acquiring the geographical information of the construction sites such as large sites and limited capability of construction workers, comprehensive site investigation of current feature of construction site is not an easy task for construction managers. To address these circumstances of construction sites, this study deduce difficulties and applicabilities of unmanned aerial vehicle in the area of construction site management. To confirm applicability of UAV in civil construction project, case study have been conducted on the road construction project. The result of case study proved that the developed system is one of promising technologies that has been studied in construction site management. To improve applicability of UAV for construction and process management information, law and technical issues will be an important area of future study.

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

해상 모빌리티 통신인프라 구현을 위한 VDES 개발 및 활용방안

  • 심우성;김부영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.406-407
    • /
    • 2022
  • 자율운항선박, 무인선과 같이 전통적 선박 형태에 자율성이 부여되는 형태로의 발전과 함께 드론, 비행체 같은 비행 형태까지 포함하는 해상 모빌리티는 기존 통신 체계 대비 실시간성 향상 및 대용량 데이터 교환이 요구되는 새로운 해상 안전 운항 체계가 수반되어야 한다. 초고속해상무선통신망(LTE-Maritime) 송수신기를 장착한 국내 선박의 경우, LTE급의 통신 서비스를 연안 최대 100km까지 받을 수 있지만, 국제 항해를 하는 국적선과 외국적 선박을 포함하는 해상 모빌리티 안전 운항 체계 구축을 위해서는 VDES(VHF Data Exchange System)와 같은 국제협약에서 인정하고 해상이동서비스(Maritime Mobile Service)에 속하면서 기존보다 빠른 통신망의 보급이 필수적이다. 본 논문에서는 향후 해상 모빌리티 구현을 위해 필요한 해상무선통신망의 하나로 VDES의 필요성에 주목하여 그간의 개발 현황으로부터 향후 VDES 서비스 도입 및 활용방안에 관해 논한다.

  • PDF

Research of the Objective Quality Comparison of Underwater Cameras (수중 촬영용 카메라의 객관적 화질 비교에 관한 연구)

  • Ha, Yeon-Chul;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.92-100
    • /
    • 2020
  • Currently, the demand for underwater or underwater photography is growing very fast. Its coverage of underwater shooting for broadcasting, leisure and sports, and military and operational use is also growing rapidly. Among them, we specifically select the best camera to be used in underwater drones to photograph and inspect marine life attached to the ship's hull. To compare three cameras performance, they are compared and evaluated using objective and subjective criteria in special circumstances such as underwater shooting. This study checks whether performance criteria, such as resolution of a camera, meet objective and subjective standards in the unusual situation of underwater shooting. And it shows that in addition to the filter that calibrates the image, proper camera selection is important for providing good picture quality. Even after this study, research using more diverse cameras could provide an appropriate standard for comparison of underwater camera quality.

Study on Experimental Verification of Uniform Control using Agricultural Drone (농업용 방제 드론을 이용한 균일 방제에 관한 실험적 검증)

  • Wooram Lee;Sang-Beom Lee; Jin-Teak Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.575-580
    • /
    • 2023
  • This study was prevent the decrease in crop output by insect pests and spraying by application uniformity. A flight level 4 m height and 4-5 m/sec. speed are difficult to maintain with a agricultural drone for aerial application, which has been affected by the methods or environmental factors, such as changes in the wind. Therefore, which can allow a controlled application width and spray rate automatically and verified experimentally using drone. The sprayed particles began to decrease from about 3.75 m on the left and right sides of the spray nozzle. According to the number of particles, the effective spraying width was observed to be about 7.5 m, and it was verified that the proposed spraying system was effective in uniform control system.