• Title/Summary/Keyword: 해양내부파

Search Result 25, Processing Time 0.019 seconds

Internal Tides in an Axially Symmetric Basin (원통형 분지내의 내부조석)

  • LIM, KEUN-SIK
    • 한국해양학회지
    • /
    • v.26 no.2
    • /
    • pp.133-143
    • /
    • 1991
  • A new internal tide model for solving flow fields and wave generations is presented here which seems to be simple to apply, converges fast and yields accurate results. The new method employs a representation of vertical structure using dynamic basis functions which depend on the stratifications. The present method has been applied to the East Sea. For a constant Brunt-Vaisala case, weak baroclinic currents are generated over the entire continertal slop: however, results using a more realistic stratification can be described using only the lowest modes and exhibit much more realistic behavior. Baroclinic tide generation is confined to the upper slope. Model results for the East sea show the semi-diurnal baroclinic modes contain almost all the energy transferred from the barotropic mode.

  • PDF

Mixing of Sea Waters in the Northern Part of the East China Sea in Summer (하계 동중국해 북부 해역에서의 해수 혼합)

  • Jang, Sung-Tae;Lee, Jae-Hak;Hong, Chang-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.390-399
    • /
    • 2007
  • In order to investigate the mixing of sea waters on the continental shelf in the northern East China Sea, Korea Ocean Research and Development Institute conducted hydrographic surveys including turbulence measurements using the R/V Eardo in August 2005 and August 2006. The turbulent kinetic energy dissipation rates based on velocity shear measurements are estimated to be $10^{-7}{\sim}10^{4}$, $10^{-7}{\sim}10^{-6}$, and $10^{-7}$ W/kg in the surface layer, bottom layer, and lower thermocline, respectively. The data sets suggest that surface layer water is being constantly mixed by winds. High dissipation rate in the lower thermocline seems to be caused by internal waves. The bottom layer with high dissipation rate also shows high turbidity, indicating the effect of tidal stirring turbulence. The vertical eddy diffusivities are $10^{-3}{\sim}10^{-2}m^2/s$ near the bottom, and these high values appear to arise from both the low stability and high turbulent mixing.

Temporal Variability of Acoustic Arrivals in the East Sea of Korea Using Tomographic Method (한국 동해에서 토모그래피용 신호를 이용한 음파 도달시간의 시변동성)

  • 오선택;나정열;오택환;박정수;나영남;김영규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.92-99
    • /
    • 2001
  • To measure temporal variability of long- range transmission in northern part of the East Sea of Korea, low frequency acoustic sources were deployed on the continental shelf 0.4km south of Cape Shultz near the port of Vladivostok during October 1999. The transmissions of the phase modulated signals were recorded by VLA moored on the northern slope of Ulleung-do. The measured signals were processed for the acoustic arrivals and their variability in time. The temporal signal processing involves pulse compression of the phase-encoded signal, time spread and temporal coherence processing. Variability of the ocean sound speed field in time scales of short period seems to be dominated by random fluctuations caused by sound speed perturbation due to the vertical displacements associated with internal waves.

  • PDF

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.

Environmental Characteristics According to the Depth in Deukryang Bay , Culturing Ground of Pen Shell ( Atrina Pectinata ) (수심에 따른 득량만 키조개 어장의 환경특성)

  • 최용규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.127-141
    • /
    • 1995
  • The distribution of water mass in Deukryang Bay was investigated using observational data obtained on July 12 (spring tide) and 19 (neap tide) in 1994. In characteristics of water mass at the bay the area is divided into three ones by a vertical attenuation coefficient k and a stratification parameter, log sub (10) (H/U super (3)), was H is depth, and U mean velocity in the bay. The contour of k=0.6 has a similar distribution to the isobath of 10m depth in spring tide, and of 5m depth in neap tide, respectively. This indicates that the water mass in the area between the isobath of 5m and 10m depth is changed by tidal periods. The stratification parameter corresponding to k=0.6 was 2.1~2.2. In the shallow water of 5m depth the characteristics of water mass was distributed in temperature of 25.5~31.$0^{\circ}C$ and salinity of 32.8~33.8PSU(Practical Salinity Unit), the temperature was high and the salinity distributed widely. In the deep water of 10m depth it was the temperature of 22.0~29.5$^{\circ}C$ and the salinity of 33.0~33.6PSU, the temperature was low and the salinity distributed narrowly. In the middle depth water of 5m to 10m depth, the temperature of 22.0~30.$0^{\circ}C$ and the salinity of 32.8~33.5PSU, its values showed the middle between the values of the deep area and the values of the shallow area.

  • PDF