• Title/Summary/Keyword: 해수위 상승

Search Result 61, Processing Time 0.027 seconds

Changes in Provenance and Transport Process of Fine Sediments in Central South Sea Mud (남해중앙니질대 세립질 퇴적물의 기원지 및 이동과정 변화)

  • Lee, Hong Geum;Park, Won Young;Koo, Hyo Jin;Choi, Jae Yeong;Jang, Jeong Kyu;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.235-247
    • /
    • 2019
  • The Central South Sea Mud (CSSM), developed in the Seomjin River estuary, is known to be supplied with sediments from Heuksan Mud Belt (HMB) and Seomjin River. However, in order to form a mud belt, more sediments must be supplied than supplied in the above areas. Therefore, research on additional sources should be conducted. In this study, clay minerals, major elements analyzes were performed on cores 16PCT-GC01 and 16PCT-GC03 in order to investigate the transition in the provenance and transport pathway of sediments in CSSM. The Huanghe sediments are characterized by higher smectite and the Changjiang sediments are characterized by higher illite. Korean river sediments contain more kaolinite and chlorite than those of chinese rivers. Korean river sediments have higher Al, Fe, K concentraion than Chinese river sediments and Chinese rivers have higher Ca, Mg, Na than those of Korean rivers. Therefore, clay minerals and major elements can be a useful indicator for provenance. Based on our results, CSSM can be divided into three sediment units. Unit 3, which corresponds to the lowstand stage, is interpreted that sediments from Huanghe were supplied to the study area by coastal or tidal currents. Unit 2, which corresponds to the transgressive stage, is interpreted to have a weaker Huanghe effect and a stronger Changjiang and Korean rivers effect. Unit 1, which corresponds to the highstand stage when the sea level is the same as present and current circulation system is formed, is interpreted that sediments from Changjiang and Korean rivers are supplied to the research area through the current.

Development of artificial intelligence-based river flood level prediction model capable of independent self-warning (독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1285-1294
    • /
    • 2021
  • In recent years, as rainfall is concentrated and rainfall intensity increases worldwide due to climate change, the scale of flood damage is increasing. Rainfall of a previously unobserved magnitude falls, and the rainy season lasts for a long time on record. In particular, these damages are concentrated in ASEAN countries, and at least 20 million people among ASEAN countries are affected by frequent flooding due to recent sea level rise, typhoons and torrential rain. Korea supports the domestic flood warning system to ASEAN countries through various ODA projects, but the communication network is unstable, so there is a limit to the central control method alone. Therefore, in this study, an artificial intelligence-based flood prediction model was developed to develop an observation station that can observe water level and rainfall, and even predict and warn floods at once at one observation station. Training, validation and testing were carried out for 0.5, 1, 2, 3, and 6 hours of lead time using the rainfall and water level observation data in 10-minute units from 2009 to 2020 at Junjukbi-bridge station of Seolma stream. LSTM was applied to artificial intelligence algorithm. As a result of the study, it showed excellent results in model fit and error for all lead time. In the case of a short arrival time due to a small watershed and a large watershed slope such as Seolma stream, a lead time of 1 hour will show very good prediction results. In addition, it is expected that a longer lead time is possible depending on the size and slope of the watershed.

Geophysical and Geological Investigation for Selecting a Dinosaur Museum Site in the Dinosaur Egg Fossil Area, Gojeong-ri, Hwasung, Gyeonggi Province (경기도 화성 고정리 공룡알 화석지 공룡생태박물관 부지선정을 위한 지구물리 및 지질조사)

  • Kim, Han-Joon;Jeong, Gap-Sik;Yi, Bo-Yeon;Jo, Churl-Hyun;Lee, Kwang-Bae;Lee, Jun-Ho;Jou, Hyeong-Tae;Lee, Gwang-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.357-363
    • /
    • 2010
  • In this study, we investigated the geologic structure of the basement and overlying sediments of the construction site of the dinosaur egg fossil museum in Hwasung, Gyeonggi Province through refraction seismology, drilling, and downward seismic velocity measurements in the drill holes. The construction site ($350{\times}750\;m^2$) is located in the reclaimed area south of Sihwa Lake, Gojeong-ri. About 6,950 m of seismic refraction data consisting of 11 lines were acquired using a sledge hammer source. Drilling to the basement was performed at five sites. Sediment samples from drilling were analysed for grain-size distribution and age dating. At two drill holes, seismic velocity was measured with depth using a hammer as a seismic source. The geological structure of the study area consists of, from top to bottom, a tidal flat layer (5 ~ 12 m thick), a weathered soil layer (2 ~ 8 m thick), and the basement. The basement is interpreted as Cretaceous sedimentary rocks that tend to be shallow eastward. The volume of the tidal flat sediments and weathered soil in the study area is estimated as $1.4{\times}10^6\;m^3$, weighing $3.5{\times}10^6$ tons. The rate of sea level rise since 8,000 yrs BP is estimated to be 0.1 ~ 0.15 cm/yr.

Quaternary Geology and Paleoecology of Hominid Occupation of Imjin Basin (임진강유역 구석기 공작의 고생태학적 배경)

  • Seonbok Yi
    • The Korean Journal of Quaternary Research
    • /
    • v.2 no.1
    • /
    • pp.25-50
    • /
    • 1988
  • The survival of rich evidence of palaeolithic occupation found in the Imjin-Hant'an River basin was possible due to many fortuitous geological conditions provided there. Formation of the basalt plain in a narrow valley system which developed during the late Mesozoic insured the appearance of a basin of sedimentation in which archaeological sites would be preserved with relatively minor post-depositional disturbance. Geomagnetic and K-Ar dating indicates that lava flows occurred during the Brunes Normal Epoch. During and after the process of basin sedimentation, erosion of the plain was confined to the major channel of the present river system which developed along the structural joints formed by the lava flow. Due to characteristic columnar structure and platy cleavage of the basalt bedrock, erosion of the basalt bedrock occurred mainly in vertical direction, developing deep but narrow entrenched valleys cut into the bedrock. Consequently, the large portion of the site area remained intact. Cultural deposits formed on top of the basalt plain were left unmodified by later fluvial disturbances due to changes in the Hant'an River base-level, since they were formed about 20 to 40m above the modern floodplain. Sedimentological evidence of cultural deposits and palynological analysis of lacustrine bed formed in the tributary basin of the Hant'an River indicate that hominid occupation occurred in this basin under rapidly deteriorating climatic conditions. From three thermoluminescence dates, the timing of hominid occupation as represented by 'Acheulian-like' bifaces apparently occur sometime during 45,000 BP. Thus, deposition of cultural layers in this basin approximately coincides with the beginning of the second stadial of the final glacial, during which the Korean Peninsula must have had provided a sanctuary for prolonged human occupation.

  • PDF

Calculation of Water Level Variations and Extreme Waves in Busan Harbor due to Storm Surges (고조로 인한 부산항 해수면 변화 및 극한파랑의 산정)

  • Whang Ho-Dong;Lee Joong-Woo;Kwon So-Hyun;Yang Sang-Yong;Gum Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.227-234
    • /
    • 2004
  • Recently huge typhoons had attacked to the coastal waters in Korea and caused disastrous casualties in those area. There are some discussions on correction to the design parameters for the coastal structures. Wave transformation computations with the extreme waves are of value in planning and constructing engineering works, especially in coastal regions. Prediction of typhoon surge elevations is based primarily on the use of a numerical model in this study, since it is difficult to study these events in real time or with use of physical models. Wave prediction with a two dimensional numerical model for a site with complicated coastal lines and structures at the period of typhoon 'Maemi' is discussed. In order to input parameters for the extreme wave conditions, we analyzed the observed and predicted typhoon data. Finally we applied the model discussed above to the storm surge and extreme wave problem at Busan Harbor, the southeast coast of Korea. Effects of water level variation and transformation of the extreme waves in relation with the flooding in coastal waters interested are analyzed. We then mack an attempt to presen a basic hazard map for the corresponding site.

  • PDF

Characteristics of Waterlevel Fluctuation in Riverside Alluvium of Daesan-myeon, Changwon City (창원시 대산면 강변충적층의 지하수위 변동 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoun-Su;Son, Keon-Tae;Cha, Yong-Hoon;Jang, Seong;Baek, Keon-Ha
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.457-474
    • /
    • 2003
  • This study aims to elucidate characteristics of groundwater level fluctuation at riverbank filtration sites in Daesan-myeon, Changwon City. Groundwater level fluctuation, river water level change and stream-aquifer interaction are very important to estimate optimal discharge rate of the pumping well. Water level contours from February 2003 to October 2003 show normal decreasing trend toward the Nakdong river with the hydraulic gradient of 0.008. However, flow reversion occurs when groundwater is discharged at the pumping wells or rise of the Nakdong river by rainfall. The fluctuation of the Nakdong river ranges 0 - 10 m msl. Autocorrelation analysis was conducted to the groundwater levels measured on the six monitoring wells (DS1, DS2, DS3, DS4, DS6 and DS7). The analyzed waterlevel data can be grouped into three: group 1 (DS1 and DS3) represents strong linearity and long memory effect, group 2 (DS1 and DS6) intermediate linearity and memory, and group 3 (DS4 and DS7) weak linearity and memory. Waterlevels of group 1 wells are relatively closely related to the change of river-water level. Those of group 2 wells are largely affected by the pumping and the river-water level, and those of group 3 wells are strongly linked to pumping.

A Study on the Evaluation Index of Crown Height given Marine Environmental Factors and Ship Characteristics (해상 환경 및 선박 특성을 반영한 마루높이 평가지표에 관한 연구)

  • Kim, Seungyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.438-444
    • /
    • 2018
  • Korea has recently selected twenty-two ports for reinforcement breakwater installation of protection facilities, due to rise sea level caused by global warming and increase in the number of typhoon and tsunami. In addition, due to consistent enlargement of ship size, dredging for depth of water for large vessel's berthing and enlargement of berth is under construction. However, no definite construction plan for the reinforcement and lengthening of crown height, which has close relationship with the safe mooring of ships. In this study, domestic and foreign design criteria of crown height were analyzed, and the crown height evaluation index and evaluation method were developed by dividing it into environment and ship elements. In particular, in the case of ship evaluation index, each step was set up in 4 steps according to domestic and foreign regulations, weighted by each step, and the safety level of crown height was evaluated. As a result of the mooring safety simulation of the 100,000 ton cruise ship, the appropriate minimum crown height standard was derived to be 3 m above A.H.H.W. The results of this study are expected to be used as basic data to propose the crown height standard reflecting ship characteristics.

Natural Heritage Values and Diversity of Geoheritages on Udo Island, Jeju Province (제주도 우도 지역 내 지질유산의 다양성과 가치)

  • Woo, Kyung Sik;Yoon, Seok Hoon;Sohn, Young Kwan;Kim, Ryeon;Lee, Kwang Choon;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.290-317
    • /
    • 2013
  • The objectives of this study are to investigate the natural heritage and scientific value of various geosites on Udo Island, and to evaluate the sites as natural monuments and as world natural heritage properties. Udo Island includes a variety of geoheritage sites. Various land forms formed during the formation of the Someori Oreum formed by phreatomagmatic eruptions. The essential elements for the formation of Udo Island are the tuff cone, overflowing lava and overlying redeposited tuff sediments. Various coastal land forms are also present. About 6,000 years B.C., when sea-level rose close to its present level due to deglaciation since the Last Glacial Maximum, carbonate sediments have been formed and deposited in shallow marine environment surrounding Udo Island. In particular, the very shallow broad shelf between Udo Island and Jeju Island, less than 20 m in water depth, has provided perfect conditions for the formation of rhodoids. Significant amounts of rhodoids are now forming in this area. Occasional transport of these rhodoids by typhoons has produced unique beach deposits which are entirely composed of rhodoids. Additional features are the Hagosudong Beach with its white carbonate sands, the Geommeole Beach with its black tuffaceous sands and Tolkani Beach with its basalt cobbles and boulders. Near Hagosudong Beach, wind-blown sands in the past produced carbonate sand dunes. On the northern part of the island, special carbonate sediments are present, due to their formation by composite processes such as beach-forming process and transportation by typhoons. The development of several sea caves is another feature of Udo Island, formed by waves and typhoon erosion within tuffaceous sedimentary rocks. In particular, one sea cave found at a depth of 10 m is very special because it indicates past sea-level fluctuations. Shell mounds in Udo Island may well represent the mixed heritage feature on this island. The most valuable geoheritage sites investigated around Udo Isalnd are rhodoid depostis on beaches and in shallow seas, and Someori Oreum composed of volcanoclastic deposits and basalt lava. Beach and shallow marine sediments, composed only of rhodoids, appear to be very rare in the world. Also, the natural heritage value of the Someori Oreum is outstanding, together with other phreatomagmatic tuff cones such as Suwolbong, Songaksan and Yongmeori. Consequently, the rhodoid deposits and the Someori Oreum are worth being nominated for UNESCO World Natural Heritage status. The designation of Someori Oreum as a Natural Monument should be a prerequisite for this procedure.

A checklist of vascular plants in limestone areas on the Korean Peninsula (한반도 석회암지대의 관속식물 목록)

  • KIM, Jung-Hyun;NAM, Gi-Heum;LEE, Seung-bae;SHIN, Sookyung;KIM, Jin-Seok
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.3
    • /
    • pp.250-293
    • /
    • 2021
  • Limestone areas are sedimentary rock outcrops consisting of calcium carbonate created several hundreds of millions of years ago by calcium-secreting marine organisms and subsequently lifted above sea level by tectonic movement. Limestone areas support very high levels of endemic species of plants and are recognized as biodiversity areas with much biological information. The purpose of this study is to devise a strategy for the comprehensive conservation of the vegetation of limestone areas through analyses of the floristics and plant species compositions in ten limestone areas on the Korean Peninsula. The results of 153 field surveys from April of 2010 to October of 2016 identified 1,202 taxa in total, representing 1,096 species, 18 subspecies, 84 varieties, 2 forms, and 2 hybrids in 530 genera and 133 families. Among them, 55 taxa were endemic plants to Korea, and 38 taxa were red data plants. The floristic target plants amounted to 102 taxa, specifically 27 taxa of grade V and 75 taxa of grade IV. In all, 121 alien plants were recorded in the investigated area. Calciphilous plants amounted to 102 taxa, specifically 14 taxa of calciphilous indicator plants, 30 taxa of superlative most calciphilous plants, and 58 taxa of comparative more calciphilous plants. A cluster analysis showed a high degree of similarity between sites that are geographically adjacent with similar habitat environments. Limestone areas also supported groups distinct from those in non-limestone areas, demonstrating the specificity of limestone flora. Plant geography approaches therefore appear to be crucial to gain a better understanding of the level of biodiversity in limestone areas, not only at the interspecific but also at the intraspecific level. These results highlight the importance of protecting limestone habitats to preserve not only their interspecific but also the intraspecific diversity, which is highly threatened.

Two-dimensional Velocity Measurements of Campbell Glacier in East Antarctica Using Coarse-to-fine SAR Offset Tracking Approach of KOMPSAT-5 Satellite Image (KOMPSAT-5 위성영상의 Coarse-to-fine SAR 오프셋트래킹 기법을 활용한 동남극 Campbell Glacier의 2차원 이동속도 관측)

  • Chae, Sung-Ho;Lee, Kwang-Jae;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2035-2046
    • /
    • 2021
  • Glacier movement speed is the most basic measurement for glacial dynamics research and is a very important indicator in predicting sea level rise due to climate change. In this study, the two-dimensional velocity measurements of Campbell Glacier located in Terra Nova Bay in East Antarctica were observed through the SAR offset tracking technique. For this purpose, domestic KOMPSAT-5 SAR satellite images taken on July 9, 2021 and August 6, 2021 were acquired. The Multi-kernel SAR offset tracking proposed through previous studies is a technique to obtain the optimal result that satisfies both resolution and precision. However, since offset tracking is repeatedly performed according to the size of the kernel, intensive computational power and time are required. Therefore, in this study, we strategically proposed a coarse-to-fine offset tracking approach. Through coarse-to-fine SAR offset tracking, it is possible to obtain a result with improved observation precision (especially, about 4 times in azimuth direction) while maintaining resolution compared to general offset tracking results. Using this proposed technique, a two-dimensional velocity measurements of Campbell Glacier were generated. As a result of analyzing the two-dimensional movement velocity image, it was observed that the grounding line of Campbell Glacier exists at approximately latitude -74.56N. The flow velocity of Campbell Glacier Tongue analyzed in this study (185-237 m/yr) increased compared to that of 1988-1989 (140-240 m/yr). And compared to the flow velocity (181-268 m/yr) in 2010-2012, the movement speed near the ground line was similar, but it was confirmed that the movement speed at the end of the Campbell Glacier Tongue decreased. However, there is a possibility that this is an error that occurs because the study result of this study is an annual rate of glacier movement that occurred for 28 days. For accurate comparison, it will be necessary to expand the data in time series and accurately calculate the annual rate. Through this study, the two-dimensional velocity measurements of the glacier were observed for the first time using the KOMPSAT-5 satellite image, a domestic X-band SAR satellite. It was confirmed that the coarse-to-fine SAR offset tracking approach of the KOMPSAT-5 SAR image is very useful for observing the two-dimensional velocity of glacier movements.