매년 여름 우리나라 양식업에 피해를 입히는 적조를 탐지하기 위한 연구는 대부분 인공위성을 이용하였으나 양식장에 대한 정보는 인공위성으로 산출하기에는 한계를 가진다. 따라서 본 연구에서는 무인항공기를 이용한 연안촬영과 그 산출물을 이용하여 적조를 탐지하는 기법을 제시하였다. 그 결과 높은 해상도를 가진 무인항공영상을 획득 할 수 있었으며 색상을 이용한 무감독 분류와 가시광영역의 세 가지 분광밴드를 이용한 단순 알고리즘을 이용하여 적조를 탐지하였다. 기존의 천연색 영상에 비하여 시각적으로 명확한 해수색의 구분이 가능하였으며 적조의 해수면 분포를 확인할 수 있었다. 이와 같은 방법은 양식장이 설치되어 있는 연안에서 더욱 정확한 적조의 분포 상황을 모니터링 할 수 있을 것으로 판단된다.
High concentration of chlorophyll a occurred around the Ulleung Warm Eddy off Ulleung Island in the East Sea of Korea in spring season. The abnormal distributions of chlorophyll a were captured by satellite remote sensing and measured field data. The temporal and spatial scale of the abnormal distributions were around 20days and 50km diameter off Ullung Island. The anomalies were quantified b)'estimated chlorophyll a derived from OCM and SeaWiFS ocean color data from 2000 to 2004. The origin of abnormal hish concentrations was estimated by this study. It was that suspended material discharged from the Nakdong River and the coastal water located in the southeastern part of Korean Peninsula moved to northeastern coast, and then moved to off Ullung island, The high chlorophyll a concentrations including inorganic materials were accumulated by anticyclonic eddy such as the Ullung Warm Eddy around Ullung island in the East Sea of Korea in spring season.
1999~2001년 한국근해에서 수온, 클로로필 ${\alpha}$, 동물플랑크톤 등 현장자료와 해수색 위성원격탐사 자료를 분석하였다. 표면수온은 온대해역의 수온계절변동을 나타내었고, 클로로필 ${\alpha}$와 동물플랑크톤현존량은 온대해역의 특징을 보였으며, 춘계와 추계의 대량번식의 크기는 식물플랑크톤의 경우 춘계가, 동물플랑크톤은 추계가 더욱 크게 나타났다. 동서남해 해역에서 전반적으로 식물플랑크톤이 대량번식 후 15일에서 30일 정도의 시간차를 두고 동물플랑크톤의 현존량이 변동하였다. 동서 남해의 평균 클로로필 ${\alpha}$의 연별 변동은 춘계의 경우 해를 거듭 할수록 감소하는 경향을, 추계 연별 변동은 동해를 제외한 남해와 서해에서는 다소 증가하는 경향을 보였다. 한편, 위성자료에서 추정된 클로로필 ${\alpha}$의 농도는 현장에서 관측된 값보다 낮은 값으로 나타났다.
본 연구에서는 Landsat-7 ETM+, Landsat-8 OLI 영상과 COMS/GOCI 영상을 이용하여 적조 픽셀의 광학적 특성을 분석하였다. 적조 픽셀을 샘플링하기 위해 Landsat-7, 8 True Color 영상을 활용하였으며, 영상에서 적조 픽셀의 좌표를 획득하였다. 획득된 픽셀의 좌표를 참조하여 동일 해역의 GOCI 영상을 통해 해당픽셀의 흡광 및 수출광량 자료를 획득하였다. 적조가 발생하지 않은 경우 412nm와 660nm 파장대에서 주흡광을 보인 것에 비해 적조 픽셀의 경우 660nm에서 주흡광을 보였으며, 412nm에서는 흡광량이 현저히 줄어든 것을 확인하였다. 수출광량의 경우 스펙트럼 형태에서는 큰 차이가 없었으나, 수출광량의 절대값이 적조 픽셀의 경우 낮게 나타났으며, 특히 660nm와 680nm 파장대에서 수출광량 감소가 크게 나타났다.
본 연구에서는 기계학습 기법의 한 갈래인 로지스틱 회귀모형과 의사결정나무 모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수해역에서 추출된 수출광량 분광 프로파일(918개)을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 정확도 평가 결과 로지스틱 회귀모형은 약 97%의 분류 정확도를 보였으며, 의사결정나무 모형은 약 86%의 분류 정확도를 보였다.
본 연구에서는 불균형 데이터 환경에서 기계학습 기법의 한 갈래인 로지스틱 회귀모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수 해역에서 추출된 수출광량 분광 프로파일을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 이 때, 청수와 탁수에 비해 자료 수가 상대적으로 적은 적조의 분광 프로파일에 백색 잡음을 추가하여 오버샘플링을 하여 불균형 데이터 문제를 해결하였다. 정확도 평가 결과 본 연구에서 제안하는 알고리즘은 약 94%의 분류 정확도를 보였다.
남극 빙붕의 붕괴 및 흐름속도의 변화는 빙상에 대한 지지력을 약화시킬 수 있어 해수면 상승에 잠재적인 원인이 될 수 있다. 이 연구에서는 2016년 4월 대규모 붕괴가 발생한 동남극 난센 빙붕에 대해 Landsat-7 Enhanced Thematic Mapper Plus(ETM+) 및 Landsat-8 Operational Land Imager(OLI) 영상을 이용하여 2000년부터 2017년까지의 연간 흐름속도 변화를 분석하였다. 흐름속도 산출을 위해 Landsat의 청색, 녹색, 적색, 근적외선, 전정색 및 첫 번째 주성분 영상 등 총 6개 영상에 orientation correlation 기법을 적용하고, 각각의 변위 산출 결과를 융합하는 다중분광 영상정합 기법을 사용하였다. Landsat 다중분광 영상정합은 난센 빙붕에서 전정색 단일 밴드 영상정합을 사용하는 경우보다 최소 14% 더 넓은 영역에 대해 신뢰할 수 있는 흐름속도를 산출하였고, Global Positioning System(GPS)로 관측된 흐름속도와 비교한 결과 ${\pm}2.1m\;a^{-1}$의 매우 작은 오차를 가지는 것으로 분석되었다. 난센 빙붕에서 2000-2017년 사이에 가장 급격한 흐름속도 증가를 나타낸 곳은 Drygalski 빙하설과 인접한 영역이었으며, 빙붕의 중앙 유선을 따라 측정된 흐름속도는 빙붕 전면(ice front)에 rift가 발달하기 전인 2010년까지 거의 변화가 없었다(${\sim}228m\;a^{-1}$). Rift가 발달하기 시작한 2011-2012년에 rift 상류에서 흐름속도의 가속화가 관측되었으나(${\sim}255m\;a^{-1}$), 이는 2010년에 비해 약 11% 빨라진 것에 불과하였다. 난센 빙붕의 rift가 완전히 발달한 2014년부터 rift 상류의 흐름속도는 다소 감소한 상태(${\sim}225m\;a^{-1}$)로 안정화 되었다. 이는 rift의 발달 및 빙붕 전면의 붕괴가 난센 빙붕의 흐름속도에 거의 영향을 주지 않았음을 의미한다.
본 연구에서는 적조 Cochlodinium Polykrikoide를 기계학습 방법과 정지궤도 해색위성 영상을 활용하여 탐지하는 방법을 제안한다. 기계학습 모형을 학습시키기 위해 GOCI Level2 자료를 활용하였으며, 국립수산과학원의 적조 속보 자료를 활용하였다. 기계학습 모델은 로지스틱 회귀모형, 의사결정나무 모형, 랜덤포래스트 모형을 사용하였다. 성능 평가 결과 기계학습을 사용하지 않은 전통적인 GOCI 영상 기반 적조 탐지 알고리즘(Son et al.,2012) (75%)과 비교해보았을 때 약 13~22%p (88~98%)의 정확도 향상을 확인할 수 있었다. 또한 기계학습 모형 간 탐지 성능을 비교 분석해본 결과 랜덤 포레스트 모형(98%)이 가장 높은 탐지 정확도를 보였다. 이러한 기계학습 기반 적조 탐지 알고리즘은 향후 적조를 조기에 탐지하고 그 이동과 확산을 추적 모니터링하는데 활용될 수 있을 것이라고 판단된다.
Forel-Ule Index (FUI)는 자연에 존재하는 담수 및 해수의 색을 남색부터 고동색까지 21 가지의 등급으로 구분하는 지표이다. FUI는 여러 선행연구에서 수계의 부영양화 지수, 수질인자, 광 특성 등과 연관 지어 분석되었으며, 여러 수질인자의 광학적 정보를 동시에 가지고 있는 새로운 수질 지표로써의 가능성이 제시되었다. 본 연구에서는 500 m의 높은 공간해상도를 가지는 정지궤도 해양위성해색탑재체(Geostationary Ocean Color Imager; GOCI) 관측 자료와 Random Forest (RF) 기계학습 기법을 활용하여 Ocean Colour-Climate Change Initiative(OC-CCI) 기반의 4 km FUI 자료를 공간 상세화 시켰다. 이를 활용하여 우리나라 연안 해역에 대한 수질인자와의 상관관계와 주요 해역에 대한 FUI의 공간적 분포 및 계절별 특성 변화를 분석하였다. 검증 결과 RF 기법으로 추정한 RF FUI는 결정계수(R2)=0.81, 평균 제곱근 오차(Root Mean Square Error; RMSE)=0.7784로, Pitarch의 OC-CCI FUI 알고리즘을 적용하여 계산한 GOCI FUI 추정 정확도(R2=0.72, RMSE=0.9708) 대비 향상된 결과를 보였다. RF FUI는 총 질소(Total Nitrogen), 총 인(Total Phosphorus), 클로로필-a(Chlorophyll-a), 총 부유물질(Total Suspended Solids), 투명도(Secchi Disk Depth)를 포함하는 5가지 수질인자와 각각 0.87, 0.88, 0.97, 0.65, -0.98의 상관계수로 강한 상관성을 보였다. 산출된 FUI의 시간적 패턴 역시 여러 수질인자와의 물리적 관계를 반영하며 유의미한 계절적 패턴의 변화를 보였다. 본 연구의 결과로 한반도 연안 수질 관리에서 고해상도 FUI의 활용 가능성을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.