• Title/Summary/Keyword: 해석적 연구

Search Result 22,742, Processing Time 0.051 seconds

Essay on Legislation for Decentralization - focused on 「LOCAL AUTONOMY ACT」 - (지방분권을 위한 법제적 일고찰 - 「지방자치법」의 법제개선 필요사항을 중심으로 -)

  • Jeon, Joo-Yeol
    • Journal of Legislation Research
    • /
    • no.54
    • /
    • pp.71-110
    • /
    • 2018
  • Starting from the agenda that we should determine the function of local government at each level in order to facilitate decentralization, this article is dedicated to demonstrating problems in the practice of Korean legislation today. On the one hand, in the "local autonomy act", the local governments' function is designated by the term "affairs of local governments" which includes autonomous duites and the duties delegated by the State to local governments. Meanwhile, all of acts by which governments are granted the power of execution, upon the principle of "the reservation of law", does not distinguish the nature of each authority as well. On the other hand, as regards the legal status of the territorial collectivity, the practice in the legislation does not clearly distinguish between territorial representation and national delegation. If we want to achieve the decentralization, we should reevaluate and determine EVERY authority and responsibility of administrative service in terms of its nature whether it is for the local diversity or for the standardization of public service in the State. In following, we should have the terminology by which we can designate the territorial collectivity which is distinguished from the national organ at the local level in the legislation.

Evaluation of Strength and Deformability of a Friction Material Based on True Triaxial Compression Tests (진삼축압축시험을 통한 마찰재료의 강도 및 변형 특성 평가)

  • Bae, Junbong;Um, Jeong-Gi;Jeong, Hoyoung
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.597-610
    • /
    • 2022
  • Knowledge of the failure behavior of friction materials considering their intermediate principal stress is related to an understanding of situations where these materials might be used: for example, the stability of deep-seated boreholes and fault slip analysis. This study designed equipment for physically implementing true triaxial compression and used it to assess specimens of plaster, a friction material. The material's mechanical behaviors are discussed based on the results. The applicability of the 3D failure criteria are also reviewed. The tested specimens were molded cuboids of width, length, and height 52, 52, and 104 mm, respectively. A total of 24 true triaxial compression tests were performed under various combinations of 𝜎3 and 𝜎2 conditions. Conventional uniaxial and triaxial compression tests were employed to estimate the mechanical properties of the plaster for use as parameters for 3D failure criteria. Examining the stress-strain relations of the plaster materials showed that a large difference between the intermediate principal stress and the minimum principal stress indicated strong brittle behavior. The mechanical behavior of the plaster used here reflects the change of intermediate principal stress. Nonlinear multiple regression analysis on the test data in the principal space showed that the modified Wiebols-Cook failure criterion and the modified Lade failure criterion were the most suitable 3D failure criteria for the tested plaster.

Effects of Ground Vegetation and Pyrethroid Spray on the Population Dynamics of Panonychus citri (Acari: Tetranychidae) and Natural Enemies in Citrus Orchard: A Short-term Effect (감귤원에서 초생관리와 합성피레스로이드계 조합처리가 귤응애와 천적의 발생양상에 미치는 단기효과)

  • Hyun, Seung Young;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.255-266
    • /
    • 2022
  • This study was conducted to examine the effects of grass vegetation (W: manual weeding, NW: herbicide sprays) and pyrethroid spray (P: pyrethroid spray, NP: no pyrethroid spray) on the population dynamics of Panonychus citri and natural enemies in citrus orchards. Two essential hypothesis were made to test the population dynamics: 1) weed planting promotes natural enemies by offering habitat and alternative food sources, resulting in the reduction of P. citri populations, and 2) pyrethroid spray removes natural enemies by its non-selective toxicity, resulting in the increasement of P. citri populations. The observed natural enemy populations (mainly Phytoseiids and Agistemus sp.) were not different largely from the expected values in the hypothesis, which assumes more abundant natural enemies in weeds and no pyrethroid plots. Although some discrepancy was occurred in NW+NP and W+NP plots in 2011, the observed values were almost same with expected values in 2012. In overall, pesticide effect was strongly significant and pyrthroids removed largely natural enemies. Although habitat (weeds) effect showed a conflict result, natural enemy population increased in plots allowing weed growth, when considering the increased autumn population relatively compared to that of spring-summer population. The decreased abnormal P. citri populations in pyrethroid plots could be explained under the assumption of a strong repellent behavior of P. citri to the pyrethroids.

Stress Intensity Factor of Cracked Plates with Bonded Composite Patch by p-Convergence Based Laminated Plate Theory (p-수렴 적층 평판이론에 의한 균열판의 팻취보강후 응력확대계수 산정)

  • Woo, Kwang-Sung;Han, Sang-Hyun;Yang, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.649-656
    • /
    • 2008
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchic void element based on the integrals of Legendre polynomials is used to characterize the fracture behaviour of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of zero stiffness element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem. It is noted that the proposed hierarchical void element can be one of alternatives to analyze the patched crack problems.

Quantitative assessment of spalling depth and width using statistical inference theory in underground openings (통계추론을 이용한 지하암반공동에서의 스폴링 깊이와 폭에 대한 정량적 평가)

  • Bang, Joon-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • Until now, the evaluation method of spalling depth using Martin et al. (1999)'s linear regression relations has long been known applicable. However, it is not likely that the proposed equation is applicable to the openings other than circular type and mostly overpredict the spalling depth in comparison with actual spalling cases. Moreover, the evaluation method to estimate the spalling width has not been presented yet; it is essential to evaluate the spalling width in addition to the spalling depth, because the shape of the spalled region influences the choice of suitable rock reinforcement. In this study, linear regression equations, in which normalized spalling depth ($d_f/W_D$) and normalized spalling width ($w_f/W_D$) are functions of three spalling evaluation indices, ${\sigma}_1/{\sigma}_c,\;D_{is}(={\sigma}_{max}/{\sigma}_c)$ and ${\sigma}_{dev}/{\sigma}_{cm}$, are established based on in-situ spalling observations and CWFS simulation results. Confidence intervals of 95% using the statistical inference theory are used in verifying the reliability of linear regression equations. Spalling depth ($d_f$) and spalling width ($w_f$) predicted from the proposed linear regression relations, which take three spalling evaluation indices into account, showed reasonable match with in-situ observations by adopting weighting factors considering the degree of variance of linear regression relations.

The studies of the granite landforms in South Korea (한국의 화강암 지형에 대한 연구)

  • KANG, Tay-Gyoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.1-15
    • /
    • 2011
  • This work is to review the granite landforms studies by Korean geographers. It is verified that geomorphlogical characteristics of granite present landscapes characterized by 1) in case of mountains, are difficultly or irregularly weathered, so as to develop rocky forms such as domes, cliffs, and tors ; 2) in case of stream valley that is inter-massif lowland, low relief hills and flood plains with alluvium. All these facts owe to the difference of weathering mode granite properties. The granite hills and alluvial plains of southwestern coastal parts in Korean peninsula is low undulatory and large owing not only to the existence of highly weathered granitic regolith, but also to frequent flooding. Cultivated brownish field, orchard, meadow and forest are located at granite hills. On the other hand paddy rice field at granite alluvial plains. Korean peninsula have endured erodible geomorphlogical processes since Miocene when warping it up. Therefore many intermontane basins are located on the weathered granite areas which are surrounded by mountains composed of much less Precambrian gneiss complex. In fact, intermontane basin is mainly linear fault-line valley. The landforms of the intermontane basins are characterized by gentle piedmont slopes, alluvial fans, fluvial terraces and alluvial plains.

An Analysis of Korean Middle School Student Achievement in Environmental Science in TIMSS 2003 (우리나라 중학생들의 환경 영역 성취도 국제 비교 분석)

  • Jeong, Eun-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.2
    • /
    • pp.200-211
    • /
    • 2006
  • The purpose of this study was to analyze Korean middle school student achievement in environmental science based on the TIMSS 2003 (Trends in International Mathematics and Science Study), a student comparison of 46 participating nations. Korea ranked the fourth with a mean score of 554 in environmental science. However, all 3 environment science topics assessed in TIMSS are not included in the Korean science curriculum through 8th grade, even though they are included in most other participating nations' curricula. The average percent correct of items was analyzed according to the main topic, the item type and the cognitive domain. Items that showed differences between the average percent correct of Korea and the international average as well as differences between the average percent correct of boys and girls were further analyzed. Results revealed that Korean students performed better than the international average, especially in 'use and conservation of natural resources', multiple-choice items, and items requiring 'factual knowledge'. Also, male students demonstrated significantly higher achievement than female students. On the other hand, Korean students showed relatively lower achievement in constructed-response items, items that contained content they had not learned in science lessons and items requiring descriptions of the uses and effect of science and technology. Moreover, Korean student lacked understanding about acid rain, global warming, and ozone layer destruction. Korean female students showed relatively lower environmental conceptions and lower performance on items requiring data analysis than Korean male students. On the basis of these results, this study suggested that topics of environmental science be included in the science curriculum and taught in the science classroom to help middle school students more fully comprehend environmental issues.

Analysis of Damage Impact Range according to the NG/NH3 Mixing Ratio when applying Ammonia as Fuel for a Combined Cycle Power Plant using an ALOHA Program (ALOHA 프로그램을 활용한 복합화력발전소 내 암모니아 연료 적용 시 NG/NH3 혼소율에 따른 피해영향범위 분석)

  • Yoo Jeong Choi;Hee Kyung Park;Min Chul Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • In this study, a quantitative risk impact assessment is performed using an ALOHA program to identify the risks when applying ammonia as fuel for combined cycle power plants as one of the solutions of climate change. The worst and the alternative accident scenarios are established for the Sejong combined cycle power plant and the effective ranges are calculated in terms of flammability, thermal radiation, overpressure and toxicity. The analysis results show that the toxic risk is the most critical and the effective distance is highly proportional to the mixing ratio of natural gas and ammonia by showing the Pearson's correlation coefficient over 98% as 0.991, 0.987 and 0.989 for the Level Of Concern(LOC)-1, LOC-2 and LOC-3, respectively. In addition, the coefficients of linearity for LOC-1, LOC-2 and LOC-3 are calculated to 133, 70 and 29, respectively so it can be confirmed that the effective distance increases as the criterion decreases.

Determination of Solidified Material's Optimum Mixing Ratio for Reservoir Embankment Reinforcement (저수지 제체 보강을 위한 고화재 최적 배합비 결정)

  • Jaegeun Woo;Jungsoon Hwang;Seungwook Kim;Seungcheol Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.5-12
    • /
    • 2024
  • Currently, a grouting method that minimizes damage to the reservoir embankment by injecting solidification agent at low pressure is commonly used to ensure waterproofing and safety of the embankment, but the use of solidification agents can cause issues, such as a decrease in durability and a lack of clear method for determining the mixing ratio. In this study, when the base ground and solidification agent were stirred and mixed at various weight mixing ratios, the permeability coefficient and strength of the mixture were confirmed through laboratory tests, and the optimal mixing ratio was suggested through analysis of the test results. The specimen for the laboratory test was produced considering the mixing ratio of the solidification agent. The specimen for the permeability coefficient test was tested by producing one each of cohesionless and cohesive soil for a mixing amount of 1.5 kN/m3 of solidification agent, and the permeability test results confirmed that the water barrier performance was secured below the permeability coefficient value required by various design criteria. A total of 24 specimens for the strength test were produced, 3 for each of 5 mixing amounts for cohesive soil and 3 mixing amounts for cohesionless soil. The strength test results showed that the uniaxial compressive strength tends to increase linearly with increasing curing time for both cohesionless soil and cohesive soil when the mixing amount is less than 2.0 kN/m3. Therefore, the optimal mixing ratio applied to the site is determined to be mixing amount of 1.5 kN/m3 and 2.0 kN/m3. Finally, numerical analysis reflecting test results was conducted on design case for improvement projects for aging reservoirs embankment to verify the water barrier performance and safety improvement effects.

Analysis of noise source for refrigerant-induced noise in suction and discharge piping systems of compressor installed in air conditioner outdoor unit using wavenumber-frequency decomposition technique (파수-주파수 분리 기법을 통한 에어컨 실외기 압축기 흡배기 배관계 냉매 유발 소음원 분석)

  • Sangjun Park;Sangheon Lee;Cheolung Cheong;Jinhyung Park;Jangwoo Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.5
    • /
    • pp.570-583
    • /
    • 2024
  • The supply of inverter-type air conditioners for cooling in summer and heating in winter is increasing. In addition, since the operating speed of the compressor has been continuously increased for higher efficiency and higher performance, the flow speed of the refrigerant has also increased. As a result, it results in the increase of the relative contribution of flow-born noise to total noise generated from outdoor unit, and this highlights the importance of designing for the noise reduction to addressing flow-borne noise and requires necessary to analyze noise generation mechanisms by flow borne noise. Therefore, in this paper, the noise generation mechanisms by flow borne noise from air conditioner outdoor unit was numerically investigated. The wall pressure field was predicted using Large Eddy Simulation(LES) for the refrigerant flow inside the pipe, and the vibration and radiated noise were predicted using structure and acoustic coupled scheme based Finite Element Method (FEM). In this step, the compressible/in-compressible pressure field were separated using Wavenumber-Frequency Analysis(WFA) for inner pipe wall, and this results were used in analyzing the noise source due to refrigerant flow.