• Title/Summary/Keyword: 해석, 모델링

Search Result 4,124, Processing Time 0.024 seconds

A Survey of Yeosu Sado Dinosaur Tracksite and Utilization of Educational Materials using 3D Photogrammetry (3D 사진측량법을 이용한 여수 사도 공룡발자국 화석산지 조사 및 교육자료 활용방안)

  • Jo, Hyemin;Hong, Minsun;Son, Jongju;Lee, Hyun-Yeong;Park, Kyeong-Beom;Jung, Jongyun;Huh, Min
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.662-676
    • /
    • 2021
  • The Yeosu Sado dinosaur tracksite is well known for many dinosaur tracks and research on the gregarious behavior of dinosaurs. In addition, various geological and geographical heritage sites are distributed on Sado Island. However, educational field trips for students are very limited due to accessibility according to its geological location, time constraints due to tides, and continuous weathering and damage. Therefore, this study aims to generate 3D models and images of dinosaur tracks using the photogrammetric method, which has recently been used in various fields, and then discuss the possibility of using them as paleontological research and educational contents. As a result of checking the obtained 3D images and models, it was possible to confirm the existence of footprints that were not previously discovered or could not represent details by naked eyes or photos. Even previously discovered tracks could possibly present details using 3D images that could not be expressed by photos or interpretive drawings. In addition, the 3D model of dinosaur tracks can be preserved as semi-permanent data, enabling various forms of utilization and preservation. Here we apply 3D printing and mobile augmented reality content using photogrammetric 3D models for a virtual field trip, and these models acquired by photogrammetry can be used in various educational content fields that require 3D models.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.

Structural and functional characteristics of rock-boring clam Barnea manilensis (암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능)

  • Ji Yeong Kim;Yun Jeon Ahn;Tae Jin Kim;Seung Min Won;Seung Won Lee;Jongwon Song;Jeongeun Bak
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.