• Title/Summary/Keyword: 해상 풍력 발전 단지

Search Result 102, Processing Time 0.026 seconds

Wave Simulation for Submarine Cable Route of Southwest Sea Offshore Wind Farm Using the SWAN Model (SWAN 모델을 이용한 서남해 해상풍력단지 해저케이블 경과지의 파랑 수치모의)

  • Ryu, Hwang-Jin;Kim, Sang-Ho;Kwoun, Chul-Hui;Cho, Kwang-Woo;Maeng, Jun-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.583-590
    • /
    • 2015
  • Submarine cable installation is essentials for grid connection between existing power grid and newly produced electricity which will be from offshore wind farm in Southwest sea area of Korea. Especially, submarine cable route and protection method is designed in order to ensure the economical efficiency, workability and stability of submarine cable installation. On this paper, we will give the basic information about the submarine cable route and protection method of offshore wind farm which will be built in Southwest sea area of Korea. For this, we have a numerical simulation at high and low tide based on the third-generation wave model SWAN(Simulating WAves Nearshore) using the long term wave data from Korea Institute of Ocean Science and Technology(KIOST). The results of the study, year mean Hs is 1.03m, Tz is 4.47s and dominant wave direction is NW and SSW When the incident wave direction is NW(Hs: 7.0 m, Tp: 11.76s), the distribution of shallow water design wave height Hs was calculated about 4.0~5.0m at high tide and 2.0~3.0m at low tide. When the incident wave direction is SSW(Hs: 5.84 m, Tp: 11.15s), the distribution of shallow water design wave height Hs was calculated about 3.5~4.5m at high tide and 1.5~2.5m at low tide. The wave direction on a dominant influence in the section of longitude UTM 249749~251349(about 1.6 km) and UTM 251549~267749(about 16.2 km) in the submarine cable route are each NW and SSW. Prominently, wave focusing phenomenon appears between Wi-do and Hawangdeung-do, in this sea area is showing a relatively high wave hight than the surrounding sea areas.

Introduction to Submarine Power Cable Detection Technology (해저 전력 케이블 탐지 기술 소개)

  • Daechul Kim;Hyeji Chae;Wookeen Chung;ChangBeom Yun;Jong Hyun Kim;Jeonghun Kim;Sungryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Offshore wind power is increasingly regarded as a viable solution for reducing greenhous emissions due to the construction of wind farms and their superior power generation efficiency. Submarine power cables play a crucial role in transmitting the electricity generated offshore to land. To monitor cables and identify points of failure, analyzing the location or depth of burial of submarine cables is necessary. This study reviewed the technology and research for detecting submarine power cables, which were categorized into seismic/acoustic, electromagnetic, and magnetic exploration. Seismic/acoustic waves are primarily used for detecting submarine power cables by installing equipment on ships. Electromagnetic and magnetic exploration detects cables by installing equipment on unmanned underwater vehicles, including autonomous underwater vehicles (AUV) and remotely operated vihicles (ROV). This study serves as a foundational resource in the field of submarine power cable detection.

A Study on p-y Curves with Pressuremeter Tests in Jeju Basalt Rock (공내재하시험을 이용한 제주 현무암의 p-y 곡선 연구)

  • Yang, Ki-Ho;Huh, Jong-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.129-137
    • /
    • 2015
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. One of the most obvious applications of the pressuremeter test is the solution of the problem of laterally loaded piles. A hyperbolic non-linear p-y criterion for rock is developed in this study that can be used in LPILE program, to predict the deflection, moment, and shear reponses of a shaft under the applied lateral loads. Finally, a comparison between the predicted and measured response at two different sites is shown to give an idea of the accuracy of the IFP method.

Analysis of Lateral Behavior of Steel Pile embedded in Basalt (암반에 근입된 강관말뚝의 수평방향 지지거동 연구)

  • Kim, Khi-Woong;Park, Jeong-Jun;Kim, Jin-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. In this study, field lateral load test of the pile for analyzing lateral behavior of the offshore wind turbine which is embedded in basalt. After calculating the subgrade resistance and the horizontal deflection from the measured strain to derive p-y curve from the lateral load test results, the subgrade resistance amplifies the error in the process of differentiation and the error of piecewise polynomial curve fitting is the smallest. In order to calculate the horizontal deflection from the measured strain, the six-order polynomial was used.

A Study on the Consecutive Failure Due to Deterioration in Surge Arresters of the Offshore Wind Farm (해상 풍력발전단지에서 뇌격 시 서지어레스터 열화로 인한 연계 고장 분석)

  • Kim, Jin-Hyuk;Kim, Kyu-Ho;Lee, Jea-Kyun;Woo, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1265-1270
    • /
    • 2018
  • One of the ways to improve the stability of power facilities used in power systems is to use power surge arresters and to protect against transient overvoltages and surges in normal operation. Also it is important to reduce the impact of lightning strikes because lightning can create overvoltage in the grid of the wind turbine and affect power quality. So This paper analyzes the effects of overvoltage and adjacent turbines due to single strike and multi strike to ground impedance changes when the surge arrester is deteriorated in a wind power farm.

Study for the Power Characteristic of NREL Phase VI Blade considering Wind Shear (Wind Shear를 고려한 NREL Phase VI 블레이드의 출력특성연구)

  • Park, Sangjun;Lee, Kyungseh;Kim, Youngchan;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.56.2-56.2
    • /
    • 2011
  • As rotor blade of a wind turbine becomes larger to satisfy the economic efficiency for offshore wind farm, the numerical analysis considering wind profile is getting emphasized. In this paper, the study for the power characteristic of a wind turbine is carried out using NREL phase VI wind turbine applied wind profile. The experimental data of NASA Ames wind tunnel for inflow velocity 7m/s is used and the numerical result is obtained by using CFD commercial solver(FLUENT).

  • PDF

Economic Evaluation of Offshore Wind Farm in Korea (국내 해상풍력발전단지의 경제성 분석)

  • Min, Chang-Gi;Hur, Don;Park, Jong Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1192-1198
    • /
    • 2014
  • With an increase in the penetration of offshore wind farm, the need of an accurate economic evaluation of offshore wind farm has become crucial. This paper presents an economic evaluation method of offshore wind farm in Korea reflecting the cost of offshore wind farm infrastructure (offshore substation, submarine cable and foundation) in its cost model. Each cost of offshore substation, submarine cable, and foundation is represented as a function of installed capacity, distance to shore, and water level, respectively. We have applied the method to the case study of offshore in Jeju Island and analyzed the economics under various conditions. The results show that the distance to shore is of importance in economics of offshore wind farm.

The Transient State characteristic and Consecutive Failure Analysis of The Offshore Wind Farm (낙뢰로 인한 해상풍력발전단지 과도상태 및 연계고장 분석)

  • Seo, Jin-Gyu;Kim, Kyu-Ho;Park, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.239-240
    • /
    • 2015
  • This paper presents the transient state characteristic and single phase ground fault occurred by deterioration of surge arrester when offshore wind turbine is struck by lightning strike. The wind turbine and submarine cable data are based on the 2.5GW offshore wind farm planned in South Korea Southwest Seashore. During lightning strikes, additional ground fault can lead to damage of the generation components. So, the sensitive analyses are conducted in order to investigate the effects of lightning strike on offshore wind farm.

  • PDF

Optimization of Grid Network for Offshore Wind Power Plant (해상풍력발전단지의 전력망 구성의 최적화에 관한 연구)

  • Moon, Won-Sik;Jo, Ara;Kim, Jae-Chul;Bae, In-Soo;Yoon, Gi-Gab;Park, Sang-Ho;Choy, Young-Do
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1094-1095
    • /
    • 2015
  • The costs of installation, loss, and energy not supplied energy for submarine cable of offshore wind power plant (OWPP) are very high because the level of technology is still in the early stage as well as because of the marine environments. Therefore, reducing the total costs of a grid network for OWPPs is very important for financial feasibility. In particular, it is needed to minimize the project cost for optimizing the grid design and offshore substation location of a OWPP. The suggested method can reduce the total system cost and make it lower compared with existing methods.

  • PDF

Communication Network Architectures for Southwest Offshore Wind Farm (한국 서남 해상 풍력발전단지 통신망 연구)

  • Ahmed, Mohamed A.;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.88-97
    • /
    • 2017
  • With the increasing of the penetration rate of large-scale wind farms, a reliable, highly available and cost-effective communication network is needed. As the failure of a WF communication network will significantly impact the control and real-time monitoring of wind turbines, network reliability should be considered into the WF design process. This paper analyzes the network reliability of different WF configurations for the Southwest Offshore project that is located in Korea. The WF consists of 20 WTs with a total capacity of 60 MW. In this paper, the performance is compared according to a variety of indices such as network unavailability, mean downtime and network cost. To increase the network reliability, partial protection and full protection were investigated as strategies that can overcome the impact of a single point of failure. Furthermore, the reliability performances of different network architectures are analyzed, evaluated and compared.