• Title/Summary/Keyword: 해상 풍력 발전 단지

Search Result 102, Processing Time 0.027 seconds

Partial Safety Factor of Offshore Wind Turbine Pile Foundation in West-South Mainland Sea (서남해안 해상풍력단지 말뚝기초의 부분안전계수)

  • Yoon, Gil Lim;Kim, Sun Bin;Kwon, O Soon;Yoo, Moo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1489-1504
    • /
    • 2014
  • This paper is aimed to suggest a site specific partial safety factor of offshore wind turbine (OWT) pile foundation design for the offshore wind turbine complex at a West-South mainland sea in Korea. International offshore wind design standards such as IEC, GL, DNV, API, ISO and EUROCODE were compared with each partial safety factor and resistance factor. Soil uncertainty analysis using a large number of soil data sampled was carried out, and their results were adapted to estimate partial safety factor of OWT pile foundation through reliability analyses. The representative partial safety factor has been estimated as 1.3. When a proposed partial factor is willing to use to other sites, it is recommended that further studies on code calibration are required to validate their accuracy using more site characterization data.

Analysis of Environmental and Social Problems Caused by Photovoltaic Complex and Wind Farm Construction and Countermeasures to Mitigate the Problems (태양광 및 풍력단지의 개발에 따른 환경적·사회적 문제 분석 및 대응방안)

  • Ahn, Sewoong;Lee, Hi Sun
    • Journal of Environmental Policy
    • /
    • v.10 no.3
    • /
    • pp.3-20
    • /
    • 2011
  • Through case studies of photovoltaic complex and wind farm construction and management, the causes of environmental and social conflicts were analyzed. Policies and measures to minimize conflicts and complement the institution were identified by analyzing successful construction and management case studies from both domestic and abroad. The causes of problems were haphazard damages to the regional environment, direct damages from power production facilities, lack of regional benefits from power production businesses, and loose environmental restrictions and management. The countermeasures to mitigate the problems at hand are to improve and strengthen the guidelines for power production businesses, secure residents' acceptability, strengthen regulations for business explanation, increase stakeholder's participation, find alternative sites, and ensure the speedy implementation of on-shore wind farms. Through these countermeasures, specific goals included in the New Renewable Energy Master Plan, such as target goals for photovoltaic and wind energy, preservation and protection of environment, and improvement of residents' acceptability, can be achieved.

  • PDF

Implementation of Small-Scale Wind Turbine Monitoring and Control System Based on Wireless Sensor Network (무선 센서 네트워크 기반 소규모 풍력발전기 모니터링 및 제어 시스템 구현)

  • Kim, Do-Young;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1808-1818
    • /
    • 2015
  • Recently, the wind power has experienced great attentions and growths among many renewable energy sources. To increase the power generation performance and economic feasibility, the size of wind turbine (WT) is getting bigger and most of wind power plants are being constructed on offshore. Therefore, the maintenance cost is relatively high because boats or helicopters are needed operators to reach the WT. In order to combat this kind of problem, remote monitoring and control system for the WT is needed. In this paper, the small-scale WT monitoring and control system is implemented using wireless sensor network technologies. To do this, sensor devices are installed to measure and send the WT status and control device is installed to receive control message for specific operation. The WT is managed by control center through graphic user interface (GUI) based monitoring and control software. Also, smart device based web-program is implemented to make the remote monitoring of the WT possible even though operators are not in control room.

Optimal Layout Design of Offshore Wind Turbines by Response Surface Analysis (반응표면분석법에 의한 해상풍력터빈 최적배치 설계)

  • Kim, Ji-Young;Kim, Kyoung-Yul;Lee, Jun-Shin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • An optimal layout condition of the offshore wind turbines is studied by using the response surface analysis which is a kind of the design of experiments. Based on the assumption that total 36 turbines would be installed in the offshore wind farm, the number and distance of the rows and columns are used as the design variables and the efficiency decrease of power generation due to the wake decay by the interactions of turbines and the installation cost of the internal electric grid are considered as the objective functions of the response surface analysis for the layout design of turbines. Useful design information can be derived by analyzing the relationship between the design variables and target functions. It is found that the row number and the distance between rows should be minimized, and the optimal distance between columns should be estimated and adopted to the layout design within the specified design range in order to ensure the economics for the offshore wind farm.

Development and Utilization of Evaluation Methods for Offshore Wind Farm Landscape Quality Assessment (해상풍력발전단지 경관의 질 평가를 위한 평가기법의 개발 및 활용방안)

  • Jin-Oh Kim;Byoungwook Min;Kyung-Sook Woo;Jin-Pyo Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.577-589
    • /
    • 2023
  • In Korea, the technical techniques for assessing visual impacts are standardized, but the methods for assessing the marine landscape itself are not standardized and need to be improved. In particular, in the landscape impact assessment of offshore wind power generation in Korea, it is necessary to recognize the landscape itself as a receptor and prepare a system that can evaluate the characteristics and sensitivity of the landscape. In this study, we propose an evaluation method for preparing a marine landscape quality assessment document that reflects the project characteristics of offshore wind power projects, and examine the possibility of utilization by applying it to actual project sites as an example. To evaluate the quality of marine scenery in offshore wind power projects, evaluation items of landscape characteristics, physical characteristics, and socio-cultural characteristics were evaluated based on the preliminary survey contents, and the quality of marine scenery was divided into five grades. Next, the evaluation criteria of the evaluation items were synthesized and the quality of the marine landscape was classified into preservation grade (grade 5), semi-preservation grade (grade 4), buffer grade (grade 3), semi-improvement grade (grade 2), and improvement grade (grade 1). In addition, the Sinan-Ui Offshore Wind Farm, an actual project site, was randomly selected to conduct the evaluation process and examine its utilization. This study aims to complement the existing method of visual impact assessment in offshore wind power projects and evaluate the quality of the marine landscape itself to effectively conserve marine landscape resources during offshore wind power projects. Rather than relying on mechanical and quantitative evaluation, this study is expected to be used as a basis for comprehensive understanding of the location and socio-cultural characteristics of the project site and for communication and cooperation with stakeholders.

Optimal Design and Economic Evaluation of Energy Supply System from On/Off Shore Wind Farms (육/해상 풍력기반 에너지생산 공정 최적 설계 및 경제성 평가)

  • Kim, Minsoo;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.156-163
    • /
    • 2015
  • This paper presents a new framework for design and economic evaluation of wind energy-based electricity supply system. We propose a network optimization (mixed-integer linear programming) model to design the underlying energy supply system. In this model we include practical constraints such as land limitations of onshore wind farms and different costs of offshore wind farms to minimize the total annual cost. Based upon the model, we also analyze the sensitivity of the total annual cost on the change of key parameters such as available land for offshore wind farms, required area of a wind turbine and the unit price of wind turbines. We illustrate the applicability of the suggested model by applying to the problem of design of a wind turbines-based electricity supply problem in Jeju. As a result of this study, we identified the major cost-drivers and the regional cost distribution of the proposed system. We also comparatively analyzed the economic performance of on/off shore wind farms in wind energy-based electricity supply system of Jeju.

Arrangement Design and Performance Evaluation for Multiple Wind Turbines of 10MW Class Floating Wave-Offshore Wind Hybrid Power Generation System (10MW급 부유식 파력-해상풍력 연계형 발전 시스템의 다수 풍력터빈 배치 설계 및 성능 평가)

  • Park, Sewan;Kim, Kyong-Hwan;Lee, Kang-Su;Park, Yeon-Seok;Oh, Hyunseok;Shin, Hyungki;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • In this study, an arrangement design process for multiple wind turbines, placed on the 10MW class floating wave-offshore wind hybrid power generation system, was presented, and the aerodynamic performance was evaluated by using a computational fluid dynamics. An arrangement design, which produces a maximum power in the site wind field, was found by using a commercial program, WindPRO, based on a blade element momentum theory, then the effect of wake interference on the system between multiple wind turbines was studied and evaluated by using ANSYS CFX.

A Feasibility Study on Annual Energy Production of the Offshore Wind Farm using MERRA Reanalysis Data (해상풍력발전단지 연간발전량 예측을 위한 MERRA 재해석 데이터 적용 타당성 연구)

  • Song, Yuan;Kim, Hyungyu;Byeon, Junho;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.33-41
    • /
    • 2015
  • A feasibility study to estimate annual energy production of an offshore wind farm was performed using MERRA reanalysis data. Two well known commercial codes commonly used to wind farm design and power prediction were used. Three years of MERRA data were used to predict annual energy predictions of the offshore wind farm close to Copenhagen from 2011 to 2013. The availability of the wind farm was calculated from the power output data available online. It was found from the study that the MERRA reanalysis data with commercial codes could be used to fairly accurately predict the annual energy production from offshore wind farms when a meteorological mast is not available.

Analysis of Wind resource over the North Korea using a WRF model (WRF을 이용한 북한 지역의 풍력-기상자원 분석)

  • Seo, Beom-Keun;Byon, Jae-Young;Choi, Young-Jean
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.188.2-188.2
    • /
    • 2010
  • 북한은 자급자족의 형태로 지하자원과 수력을 이용하여 에너지원으로 사용하고 수입연료를 자제하는 실정이다. 하지만 기존의 발전 설비들의 노후화와 지하자원의 확보의 어려움이 증가 되어 신재생에너지의 개발을 확대하고 있다. 이에 우리나라에서는 남북의 기술교류 확대 및 미래 에너지 자원의 확보를 위하여 북한 자원자원에 대한 연구가 이뤄지고 있다. 기존의 연구에서는 북한지역의 관측값을 활용하거나 저해상도의 바람지도들이 작성되었다. 북한 지역의 바람의 분포를 세밀히 파악하기 위하여 기존의 바람지도 보다 상세한 풍력-기상자원지도가 필요하기 때문에 연구를 진행하였다. 북한의 풍력-기상자원지도를 개발하기 위해 미국 NCAR에서 개발한 중규모 모형인 WRF(Weather Research & Forcasting)을 활용하였다. 좋은 풍력자원을 갖춘 장소에 풍력 단지를 조성하기 위해서는 고해상도의 기상자원지도를 이용해서 파악하는 것이 필요하므로 해상도를 1km으로 설정하여 수행되었다. 본 연구의 결과로 지상 80 m에서의 1km 해상도를 갖는 풍력-기상자원지도를 작성하였다. 개발된 풍력-기상자원지도의 검증을 위해서 우리나라에서 확보가 가능한 북한 27개 지점의 지상 10 m 바람자료들을 활용하였다. 풍속에 대한 검증은 Bias와 RMSE을 이용하였으며, 풍향의 검증은 MAE을 활용하였다. 연 평균의 북한의 풍력-기상자원지도를 보면, 북한의 산맥을 중심으로 다른 지역보다 높은 풍속 분포를 보이고 있으며, 황해도를 포함한 북한의 서해안지역에서 비교적 높은 풍속의 분포를 나타내고 있다. 계절별로 살펴보면 봄철과 겨울철에 여름과 가을철보다 높은 풍력자원이 나타나며, 여름철이 가장 낮은 풍력자원을 갖는 것으로 분석되었다.

  • PDF