• Title/Summary/Keyword: 해상 객체 검출

검색결과 28건 처리시간 0.026초

두 개의 구분자 기반의 초해상화 기법을 이용한 다중객체 검출 방법 (Multiple Objects Detection using Super-Resolution Method with Two Discriminators)

  • 김진서;정영민;황성빈;권오설
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.82-84
    • /
    • 2022
  • 최근 자율주행에서 안전한 주행을 위해 영상 기반 다중객체 검출 기술이 활발히 연구되고 있다. 이때, 저해상도 영상은 객체 검출 단계에서 정확도가 떨어지는 한계가 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 초해상화와 객체 검출을 위한 방법을 함께 사용하는 기법을 제안한다. 더 나아가 초해상화 단계에서 하나의 구분자만 사용하는 기존의 방법과 다르게 이미지 생성 과정 중간에서 추가의 구분자를 사용하여 총 두 개의 구분자를 사용하여 성능을 향상하고자 하였다. 본 논문은 한국 고속도로 교통 데이터를 사용하여 실험하였으며, 그 결과 제안된 방법의 성능이 mAP@0.5 및 F1 점수 측면에서 기존 방법보다 우수하다는 것을 확인하였다.

  • PDF

원격 영상에서 심층 잔차 밀집 기반의 초고해상도 기법을 이용한 차량 검출 알고리즘 (Vehicle Detection Algorithm Using Super Resolution Based on Deep Residual Dense Block for Remote Sensing Images)

  • 권오설
    • 방송공학회논문지
    • /
    • 제28권1호
    • /
    • pp.124-131
    • /
    • 2023
  • 원거리에서 특정 영역의 물리적 특성 또는 상황에 대한 정보를 얻기 위해 원격 탐사 영상에 객체 검출 기법이 연구되고 있다. 이때 저해상도인 원격 영상은 정보의 손실로 인해 객체 검출의 정확도가 떨어지는 문제가 발생한다. 본 논문에서는 이러한 문제점을 해결하기 위해 초고해상도 기법과 객체 검출 방법을 하나의 네트워크로 구성하여 원격 영상에서 객체 검출의 성능을 높이는 방법을 제안한다. 제안한 방법은 심층 잔차 밀집 기반의 네트워크를 구성하여 저해상도 영상에서 객체의 특징을 복원하고자 하였다. 추가적으로 이를 객체 검출 단계인 YOLOv5와 하나의 네트워크로 구성함으로써 객체 검출의 성능을 향상시키고자 하였다. 제안한 방법은 저해상도 영상을 위해 VEDAI 데이터를 이용하였으며 차량 검출에서 VISIBLE 기준으로 mAP@0.5에 대해 81.38%까지 향상됨을 확인하였다.

효율적인 작은 객체 검출을 위한 균형적인 성능의 YOLOv3-tiny (Balanced performance for Efficient Small Object Detection YOLOv3-tiny)

  • 이경민;송혁;김제우;인치호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.117-118
    • /
    • 2018
  • 본 논문에서는 작은 객체를 검출하기 위한 수정 된 YOLOv3-tiny 를 제안한다. 컴퓨터 비전에서 작은 객체 검출은 제한된 해상도와 정보로 검출하기 어렵다. 이 문제를 해결하기 위해 기존 방법의 대부분은 높은 정확도 향상을 위해 속도를 희생한다. 본 논문은 정확도와 속도가 균형적인 성능을 통해 빠른 속도로 작은 객체를 검출하는 것을 목표로 한다. 실험은 WIDER FACE 와 자체 수집한 데이터베이스에서 기존 YOLOv3-tiny 보다 높은 87.48% mAP 를 얻었으며, 속도는 각각 100.5FPS 로 YOLOv3-tiny 보다는 느리지만 높은 정확도와 YOLOv3 보다는 빠르지만 낮은 정확도를 통해 균형적인 성능을 얻을 수 있다.

  • PDF

Gaussian Mixture Model 기반 이동 객체 검출기의 하드웨어 구조 설계 (Design of Moving Object Detector Based on Gaussian Mixture Model)

  • 조재찬;정용철;윤경한;정윤호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1571-1572
    • /
    • 2015
  • 본 논문에서는 GMM (Gaussian mixture model) 기반의 BS (background subtraction) 알고리즘을 이용한 이동 객체 검출기의 하드웨어 구조 설계 결과를 제시하였다. 설계된 이동객체 검출기는 1280 * 720 HD 해상도의 영상을 30 frames per second로 실시간 처리가 가능하다. 하드웨어 구현은 Verilog-HDL을 이용하였으며, FPGA 기반 구현 결과, 설계된 이동 객체 검출기는 582 Slice, 1,698 Slice LUT, 8 DSP48s, 1,769 Flip Flop, 691.2 KByte BRAM으로 구성되었음을 확인하였다.

객체 인식 정확도 개선을 위한 이미지 초해상도 기술 (Image Super-Resolution for Improving Object Recognition Accuracy)

  • 이성진;김태준;이충헌;유석봉
    • 한국정보통신학회논문지
    • /
    • 제25권6호
    • /
    • pp.774-784
    • /
    • 2021
  • 객체 검출 및 인식 과정은 컴퓨터비전 분야에서 매우 중요한 과업으로써, 관련 연구가 활발하게 진행되고 있다. 그러나 실제 객체 인식 과정에서는 학습된 이미지 데이터와 테스트 이미지 데이터간 해상도 차이로 인하여 인식기의 정확도 성능이 저하되는 문제가 종종 발생한다. 이를 해결하기 위해 본 논문에서는 객체 인식 정확도 향상을 위한 이미지 초해상도 기법을 제안하여 객체 인식 및 초해상도 통합 프레임워크를 설계하고 개발하였다. 세부적으로는 11,231장의 차량 번호판 훈련용 이미지를 웹 크롤링, 인조데이터 생성 등을 통해 자체적으로 구축하고, 이를 활용하여 이미지 좌우 반전에 강인하도록 목적함수를 정의하여 이미지 초해상도 인공 신경망을 훈련시켰다. 제안 방법의 성능을 검증하기 위해 훈련된 이미지 초해상도 및 번호 인식기 1,999장의 테스트 이미지에 실험하였고, 이를 통해 제안한 초해상도 기법이 문자 인식 정확도 개선 효과가 있음을 확인하였다.

해상 객체 검출 고속 처리를 위한 영상 전처리 알고리즘 설계와 딥러닝 기반의 통합 시스템 (Design of Video Pre-processing Algorithm for High-speed Processing of Maritime Object Detection System and Deep Learning based Integrated System)

  • 송현학;이효찬;이성주;전호석;임태호
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.117-126
    • /
    • 2020
  • 해상 객체 인식은 자율운항선박(MASS)의 지능형 보조 시스템으로써, 선장이 육안으로 해상 주변의 충돌 위험성이 있는 부유물을 확인하던 정보를 컴퓨터를 통해 자동으로 인식하여 사람이 확인하는 방법과 유사한 정확도로 인지하는 방법을 말한다. 선박 주변의 물체를 인식하는 방법으로 기존에는 레이더나 소나와 같은 장치로부터 수집된 정보를 통해 확인하였지만, 인공지능의 기술이 발달하면서 선박 지능형 CCTV를 통해 운항 항로에 있는 다양한 부유물을 인식하는 것이 가능하다. 하지만, 자율 선박의 다양한 요구사항과 복잡성 때문에 영상 데이터의 처리속도가 느려지게 된다면 원활한 서비스 지원은 물론 안전성도 보장할 수 없게 된다. 이러한 문제를 해결하고자 본 논문에서는 해상 객체를 검출하는 데 있어 영상 데이터의 연산량을 최소화하여 처리속도를 높이기 위한 연구를 진행하였다. 해상 객체 인식의 관심 영역을 확보하기 위해서는 일반적으로 수평선을 찾는데 기존 연구들은 허프 변환 알고리즘을 활용하지만 본 논문에서는 속도를 개선하기 위해 이진화 알고리즘을 최적화하여 실제 객체의 위치와 유사한 영역을 찾는 새로운 방법을 제안한다. 또한, 제안하는 방법의 유용성을 증명하기 위해 딥러닝 CNN을 활용하여 해상 객체 인식 시스템을 구현함으로써 알고리즘의 성능을 평가하였다. 제안하는 알고리즘은 기존 방법의 인식 정확도를 유지하면서 약 4배 이상의 빠른 성능을 얻을 수 있었다.

배경 구축 기법과 형태학적 연산 기반의 다중 선박 객체 검출 (Multiple Ship Object Detection Based on Background Registration Technique and Morphology Operation)

  • 김원희;;김종남;문광석
    • 한국멀티미디어학회논문지
    • /
    • 제15권11호
    • /
    • pp.1284-1291
    • /
    • 2012
  • 선박 객체 검출 기술은 입력된 비디오 및 영상 데이터에서 선박 객체가 존재하는 경우 선박의 위치를 검출하는 기술로서 입력 영상의 환경 변화와 잡음의 영향에 따라서 검출 정확도의 편차가 높다. 이런 문제점을 해결하기 위하여 본 논문에서는 배경 구축 기법과 형태학적 연산 기반의 다중 선박 객체 검출 기술을 제안한다. 제안하는 방법은 배경 제거 단계, 잡음 제거 단계, 객체 기준 위치 설정 단계, 객체 재구성 단계, 다중 객체 검출 단계 등 5단계를 거쳐서 선박을 검출한다. 다양한 변수를 고려한 15가지 실험 비디오를 대상으로 한 실험을 통해서 98.7%의 검출율을 나타내었으며, 환경 변화에 강인한 검출을 수행하는 것을 확인할 수 있었다. 제안하는 방법은 해상 관제와 선박 자동 운항 기술의 기반 기술로서 유용하게 사용될 수 있다.

압축센싱이 Mask R-CNN 기반의 객체검출에 미치는 영향 분석 (Analysis of the Effect of Compressed Sensing on Mask R-CNN Based Object Detection)

  • 문한솔;권혜민;이창교;서정욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.97-99
    • /
    • 2022
  • 산업과 기술력이 발전하면서 이에 대한 데이터의 양도 증폭하고 있으며 해당 기술력과 정보 전달에 대한 연구가 활발히 진행되고 있다. 따라서 본 논문에서는 데이터의 양을 줄이기 위해서 압축센싱을 활용하였고 해당 데이터가 객체 검출 알고리즘인 Mask R-CNN 모델에 미치는 영향을 분석하였다. 압축률이 높아질수록 이미지의 데이터 양이 줄어들면서 해상도가 낮아지는 것을 확인할 수 있었지만 객체 검출에서는 원본과 큰 차이를 보이지 않고 대부분의 객체가 검출되는 것을 확인하였다.

  • PDF

ESRGAN과 Semantic Soft Segmentation을 이용한 객체 분할 (Object Segmentation Using ESRGAN and Semantic Soft Segmentation)

  • 윤동식;곽노윤
    • 사물인터넷융복합논문지
    • /
    • 제9권1호
    • /
    • pp.97-104
    • /
    • 2023
  • 본 논문은 ESRGAN(Enhanced Super Resolution GAN)과 SSS(Semantic Soft Segmentation)을 이용한 객체 분할에 관한 것이다. 본 논문의 연구진이 앞서 제안한 Mask R-CNN과 SSS를 이용한 객체 분할 방법의 분할 성능은 전반적으로 양호하지만 객체의 크기가 상대적으로 작은 경우 분할 성능이 저조해지는 문제점이 있었다. 본 논문은 이러한 문제점을 해소하기 위한 것이다. 제안된 방법은 Mask R-CNN을 통해 검출된 객체의 크기가 일정 기준치 이하인 경우, ESRGAN을 통해 초해상화를 수행한 후, SSS을 수행함으로써 소형 객체의 분할 성능을 개선하고자 한다. 제안된 방법에 따르면, 기존의 방법에 비해 크기가 작은 객체의 분할 특성을 좀 더 효과적으로 개선할 수 있음을 확인할 수 있었다.

선박안전 운항을 위한 이진 분할 알고리즘 기반 해상 객체 검출 하드웨어 가속기 설계 및 구현 (Design and Implementation of a Hardware Accelerator for Marine Object Detection based on a Binary Segmentation Algorithm for Ship Safety Navigation)

  • 이효찬;송현학;이성주;전호석;김효성;임태호
    • 한국정보통신학회논문지
    • /
    • 제24권10호
    • /
    • pp.1331-1340
    • /
    • 2020
  • 해상 객체 검출은 선장이 육안으로 해상 주변의 충돌 위험성이 있는 부유물을 컴퓨터를 통해 자동으로 검출하여 사람이 확인하는 방법과 유사한 정확도로 인지하는 방법을 말한다. 기존 선박에서는 레이더의 전파를 통해 해상 부유물의 유무와 거리를 판단하였지만 형체를 알아내어 장애물이 무엇인지는 판단할 수 없는 약점이 있다. 반면, 카메라는 인공지능 기술이 발달하면서 물체를 검출하거나 인식하는데 성능이 우수하여 항로에 있는 장애물을 정확하게 판단할 수 있다. 하지만, 디지털 영상을 분석하기 위해서는 컴퓨터가 대용량의 화소를 연산해야 하는데 CPU는 순차적 처리 방식에 특화된 구조이기에 처리속도가 매우 느려 원활한 서비스 지원은 물론 안전성도 보장할 수 없게 된다. 따라서 본 논문에서는 해상 객체 인식 소프트웨어를 개발하였고 연산량이 많은 부분을 가속화하기 위해 FPGA로 구현하였다. 또한, 임베디드 보드와 FPGA 인터페이스를 통해 시스템 구현 완성도를 높였으며 소프트웨어 기반의 기존 구현 방법보다 약 30배의 빠른 성능을 얻었고 전체 시스템의 속도는 약 3배 이상이 개선되었음을 확인할 수 있었다.