최근 자율주행에서 안전한 주행을 위해 영상 기반 다중객체 검출 기술이 활발히 연구되고 있다. 이때, 저해상도 영상은 객체 검출 단계에서 정확도가 떨어지는 한계가 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 초해상화와 객체 검출을 위한 방법을 함께 사용하는 기법을 제안한다. 더 나아가 초해상화 단계에서 하나의 구분자만 사용하는 기존의 방법과 다르게 이미지 생성 과정 중간에서 추가의 구분자를 사용하여 총 두 개의 구분자를 사용하여 성능을 향상하고자 하였다. 본 논문은 한국 고속도로 교통 데이터를 사용하여 실험하였으며, 그 결과 제안된 방법의 성능이 mAP@0.5 및 F1 점수 측면에서 기존 방법보다 우수하다는 것을 확인하였다.
원거리에서 특정 영역의 물리적 특성 또는 상황에 대한 정보를 얻기 위해 원격 탐사 영상에 객체 검출 기법이 연구되고 있다. 이때 저해상도인 원격 영상은 정보의 손실로 인해 객체 검출의 정확도가 떨어지는 문제가 발생한다. 본 논문에서는 이러한 문제점을 해결하기 위해 초고해상도 기법과 객체 검출 방법을 하나의 네트워크로 구성하여 원격 영상에서 객체 검출의 성능을 높이는 방법을 제안한다. 제안한 방법은 심층 잔차 밀집 기반의 네트워크를 구성하여 저해상도 영상에서 객체의 특징을 복원하고자 하였다. 추가적으로 이를 객체 검출 단계인 YOLOv5와 하나의 네트워크로 구성함으로써 객체 검출의 성능을 향상시키고자 하였다. 제안한 방법은 저해상도 영상을 위해 VEDAI 데이터를 이용하였으며 차량 검출에서 VISIBLE 기준으로 mAP@0.5에 대해 81.38%까지 향상됨을 확인하였다.
본 논문에서는 작은 객체를 검출하기 위한 수정 된 YOLOv3-tiny 를 제안한다. 컴퓨터 비전에서 작은 객체 검출은 제한된 해상도와 정보로 검출하기 어렵다. 이 문제를 해결하기 위해 기존 방법의 대부분은 높은 정확도 향상을 위해 속도를 희생한다. 본 논문은 정확도와 속도가 균형적인 성능을 통해 빠른 속도로 작은 객체를 검출하는 것을 목표로 한다. 실험은 WIDER FACE 와 자체 수집한 데이터베이스에서 기존 YOLOv3-tiny 보다 높은 87.48% mAP 를 얻었으며, 속도는 각각 100.5FPS 로 YOLOv3-tiny 보다는 느리지만 높은 정확도와 YOLOv3 보다는 빠르지만 낮은 정확도를 통해 균형적인 성능을 얻을 수 있다.
본 논문에서는 GMM (Gaussian mixture model) 기반의 BS (background subtraction) 알고리즘을 이용한 이동 객체 검출기의 하드웨어 구조 설계 결과를 제시하였다. 설계된 이동객체 검출기는 1280 * 720 HD 해상도의 영상을 30 frames per second로 실시간 처리가 가능하다. 하드웨어 구현은 Verilog-HDL을 이용하였으며, FPGA 기반 구현 결과, 설계된 이동 객체 검출기는 582 Slice, 1,698 Slice LUT, 8 DSP48s, 1,769 Flip Flop, 691.2 KByte BRAM으로 구성되었음을 확인하였다.
객체 검출 및 인식 과정은 컴퓨터비전 분야에서 매우 중요한 과업으로써, 관련 연구가 활발하게 진행되고 있다. 그러나 실제 객체 인식 과정에서는 학습된 이미지 데이터와 테스트 이미지 데이터간 해상도 차이로 인하여 인식기의 정확도 성능이 저하되는 문제가 종종 발생한다. 이를 해결하기 위해 본 논문에서는 객체 인식 정확도 향상을 위한 이미지 초해상도 기법을 제안하여 객체 인식 및 초해상도 통합 프레임워크를 설계하고 개발하였다. 세부적으로는 11,231장의 차량 번호판 훈련용 이미지를 웹 크롤링, 인조데이터 생성 등을 통해 자체적으로 구축하고, 이를 활용하여 이미지 좌우 반전에 강인하도록 목적함수를 정의하여 이미지 초해상도 인공 신경망을 훈련시켰다. 제안 방법의 성능을 검증하기 위해 훈련된 이미지 초해상도 및 번호 인식기 1,999장의 테스트 이미지에 실험하였고, 이를 통해 제안한 초해상도 기법이 문자 인식 정확도 개선 효과가 있음을 확인하였다.
해상 객체 인식은 자율운항선박(MASS)의 지능형 보조 시스템으로써, 선장이 육안으로 해상 주변의 충돌 위험성이 있는 부유물을 확인하던 정보를 컴퓨터를 통해 자동으로 인식하여 사람이 확인하는 방법과 유사한 정확도로 인지하는 방법을 말한다. 선박 주변의 물체를 인식하는 방법으로 기존에는 레이더나 소나와 같은 장치로부터 수집된 정보를 통해 확인하였지만, 인공지능의 기술이 발달하면서 선박 지능형 CCTV를 통해 운항 항로에 있는 다양한 부유물을 인식하는 것이 가능하다. 하지만, 자율 선박의 다양한 요구사항과 복잡성 때문에 영상 데이터의 처리속도가 느려지게 된다면 원활한 서비스 지원은 물론 안전성도 보장할 수 없게 된다. 이러한 문제를 해결하고자 본 논문에서는 해상 객체를 검출하는 데 있어 영상 데이터의 연산량을 최소화하여 처리속도를 높이기 위한 연구를 진행하였다. 해상 객체 인식의 관심 영역을 확보하기 위해서는 일반적으로 수평선을 찾는데 기존 연구들은 허프 변환 알고리즘을 활용하지만 본 논문에서는 속도를 개선하기 위해 이진화 알고리즘을 최적화하여 실제 객체의 위치와 유사한 영역을 찾는 새로운 방법을 제안한다. 또한, 제안하는 방법의 유용성을 증명하기 위해 딥러닝 CNN을 활용하여 해상 객체 인식 시스템을 구현함으로써 알고리즘의 성능을 평가하였다. 제안하는 알고리즘은 기존 방법의 인식 정확도를 유지하면서 약 4배 이상의 빠른 성능을 얻을 수 있었다.
선박 객체 검출 기술은 입력된 비디오 및 영상 데이터에서 선박 객체가 존재하는 경우 선박의 위치를 검출하는 기술로서 입력 영상의 환경 변화와 잡음의 영향에 따라서 검출 정확도의 편차가 높다. 이런 문제점을 해결하기 위하여 본 논문에서는 배경 구축 기법과 형태학적 연산 기반의 다중 선박 객체 검출 기술을 제안한다. 제안하는 방법은 배경 제거 단계, 잡음 제거 단계, 객체 기준 위치 설정 단계, 객체 재구성 단계, 다중 객체 검출 단계 등 5단계를 거쳐서 선박을 검출한다. 다양한 변수를 고려한 15가지 실험 비디오를 대상으로 한 실험을 통해서 98.7%의 검출율을 나타내었으며, 환경 변화에 강인한 검출을 수행하는 것을 확인할 수 있었다. 제안하는 방법은 해상 관제와 선박 자동 운항 기술의 기반 기술로서 유용하게 사용될 수 있다.
산업과 기술력이 발전하면서 이에 대한 데이터의 양도 증폭하고 있으며 해당 기술력과 정보 전달에 대한 연구가 활발히 진행되고 있다. 따라서 본 논문에서는 데이터의 양을 줄이기 위해서 압축센싱을 활용하였고 해당 데이터가 객체 검출 알고리즘인 Mask R-CNN 모델에 미치는 영향을 분석하였다. 압축률이 높아질수록 이미지의 데이터 양이 줄어들면서 해상도가 낮아지는 것을 확인할 수 있었지만 객체 검출에서는 원본과 큰 차이를 보이지 않고 대부분의 객체가 검출되는 것을 확인하였다.
본 논문은 ESRGAN(Enhanced Super Resolution GAN)과 SSS(Semantic Soft Segmentation)을 이용한 객체 분할에 관한 것이다. 본 논문의 연구진이 앞서 제안한 Mask R-CNN과 SSS를 이용한 객체 분할 방법의 분할 성능은 전반적으로 양호하지만 객체의 크기가 상대적으로 작은 경우 분할 성능이 저조해지는 문제점이 있었다. 본 논문은 이러한 문제점을 해소하기 위한 것이다. 제안된 방법은 Mask R-CNN을 통해 검출된 객체의 크기가 일정 기준치 이하인 경우, ESRGAN을 통해 초해상화를 수행한 후, SSS을 수행함으로써 소형 객체의 분할 성능을 개선하고자 한다. 제안된 방법에 따르면, 기존의 방법에 비해 크기가 작은 객체의 분할 특성을 좀 더 효과적으로 개선할 수 있음을 확인할 수 있었다.
해상 객체 검출은 선장이 육안으로 해상 주변의 충돌 위험성이 있는 부유물을 컴퓨터를 통해 자동으로 검출하여 사람이 확인하는 방법과 유사한 정확도로 인지하는 방법을 말한다. 기존 선박에서는 레이더의 전파를 통해 해상 부유물의 유무와 거리를 판단하였지만 형체를 알아내어 장애물이 무엇인지는 판단할 수 없는 약점이 있다. 반면, 카메라는 인공지능 기술이 발달하면서 물체를 검출하거나 인식하는데 성능이 우수하여 항로에 있는 장애물을 정확하게 판단할 수 있다. 하지만, 디지털 영상을 분석하기 위해서는 컴퓨터가 대용량의 화소를 연산해야 하는데 CPU는 순차적 처리 방식에 특화된 구조이기에 처리속도가 매우 느려 원활한 서비스 지원은 물론 안전성도 보장할 수 없게 된다. 따라서 본 논문에서는 해상 객체 인식 소프트웨어를 개발하였고 연산량이 많은 부분을 가속화하기 위해 FPGA로 구현하였다. 또한, 임베디드 보드와 FPGA 인터페이스를 통해 시스템 구현 완성도를 높였으며 소프트웨어 기반의 기존 구현 방법보다 약 30배의 빠른 성능을 얻었고 전체 시스템의 속도는 약 3배 이상이 개선되었음을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.