• Title/Summary/Keyword: 해상 $CO_2$ 지중저장

Search Result 11, Processing Time 0.02 seconds

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin (포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가)

  • Kwon, Yi Kyun;Chang, Chandong;Shinn, Youngjae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.217-246
    • /
    • 2018
  • During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.

Demonstration-scale Offshore CO2 Storage Project in the Pohang Basin, Korea (포항분지 해상 중소규모 CO2 저장 실증연구)

  • Kwon, Yi Kyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.133-160
    • /
    • 2018
  • $CO_2$ storage is a very important technology for reduction of greenhouse gas emissions and has been considered as almost the only viable and effective option for immediate large-scale $CO_2$ sequestration. Small-scale demonstration project for offshore $CO_2$ storage in the Pohang Basin is the transitional stage R&D program for technological preparation of large-scale $CO_2$ storage project in Korea. Through the extensive exploration research for prospective $CO_2$ storage sites, the offshore strata in the Pohang Basin was recommended for the storage formation of the small-scale demonstration project. The Pohang Offshore Storage Project launched at 2013, and has accomplished the technical demonstration and technological independence in a wide range of $CO_2$ storage technology, such as geophysical exploration, storage site characterization, storage design, offshore platform construction, injection-well drilling and completion, deployment of injection facility, operation of $CO_2$ injection, and $CO_2$ monitoring. The project successfully carried out $CO_2$ test injection in early 2017, and achieved its final goal for technical development and demonstration of $CO_2$ storage in Korea. The realization of $CO_2$ injection in this project is the measurable result and has been recorded as the first success in Korea. The Pohang Offshore Storage Project has a future plan for the continuous operation of $CO_2$ injection and completion of $CO_2$ monitoring system. The project has provided in-house technical and practical expertises, which will be a solid foundation for the commercial-scale $CO_2$ storage business in Korea. Additionally, the project will help to secure national technical competitiveness in growing international technology market for $CO_2$ storage.

Review of CO2 Storage Projects and Driving Strategy of CO2 Storage Program in Korea (이산화탄소 지중저장 사업의 추진현황 검토 및 한국의 추진방향 제안)

  • Gwon, Lee-Gyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.167-185
    • /
    • 2016
  • $CO_2$ 지중저장 기술은 가장 유력한 대용량 온실가스 감축기술의 하나이다. 이 기술을 적용하여 국제적으로 노르웨이, 알제리, 캐나다, 미국 등에서 이미 대규모 실증 및 상용화 사업이 수행되고 있으며, 호주, 일본, 네덜란드, 독일 등 그 밖의 여러 나라에서 다양한 내용과 규모를 갖는 중소규모 실증사업이 진행되고 있다. 한국도 소규모 육상 파일럿 저장 프로젝트와 중규모 해상 저장실증 프로젝트가 추진되어 착실하게 기술개발과 경험확보를 위해 노력하고 있다. $CO_2$ 지중저장 사업은 화석연료의 사용이 다른 에너지원으로 대체되기 전까지 지속적으로 확장될 것으로 예측되고 있으나, 온실가스 감축시장의 불안전성, 사업의 수익구조와 관련된 경제성, 누출에 대한 안전성 등의 위협요소를 갖고 있다. 따라서 이러한 위협을 극복하기 위해 많은 국가와 기업들이 저비용-고효율 지중저장 기술과 안전한 지중저장 기술의 확보를 목표로 연구개발 및 실증사업을 추진하고 있다. 한국의 경우에 저장소가 주요 포집원으로부터 상당한 거리를 갖고 있는 해저에 발달하고 있기 때문에 지중저장 사업의 경제성 확보가 매우 불리한 조건이다. 따라서 정부나 기업이 CCS 기술을 주요 온실가스 감축수단으로 채택하여 대규모 지중저장 사업을 본격적으로 착수하는 것을 주저하고 있다. 한국과 같은 불리한 조건을 갖는 국가의 경우에 특히 대규모 저장소의 확보를 포함한 저비용-고효율 지중저장 기술의 실용화가 절실하게 필요하다. 결론적으로 한국의 $CO_2$ 지중저장 사업의 성공적인 추진을 위해서는 대규모 저장소의 확보, 저비용-고효율 지중저장 기술의 개발과 실증을 통한 실용화, 중소규모 지중저장 실증사업으로 축적한 기술과 경험으로 대규모 지중저장 사업의 효율화 달성이 요구된다. 이를 위한 실천적인 로드맵과 프로그램의 작성과 착실한 이행 역시 중요하다. 이러한 기반이 착실하게 다져질 경우에 한국에서 대규모 CCS 통합실증과 $CO_2$ 지중저장 사업이 본격적으로 개시될 수 있을 것이다.

Design and Construction Study of an Injection Facility for CO2 Offshore Storage (CO2 해상 지중저장을 위한 주입설비 설계 및 구축 연구)

  • Moon, Hung-Man;Kim, Hyo-Joon;Shin, Se-Jin;Lee, Yong-Il;Kwon, Si-Hyun;Kwon, Yi-Kyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Almost all countries of the world have recently made great efforts to reduce green-house gases to alleviate the global warming threatening human survival, because a huge amount of carbon dioxide as one of the main green-house gases has been emitted from the combustion processes of fossil fuels such as coal and oil. $CO_2$ capture and storage (CCS) technology is a representative method to diminish the green-house gases, and actively investigated by many countries. This study focuses on the design and construction of a high pressure $CO_2$ injection facility to store it to underground, which is the first $CO_2$ injection in Korea following the steps of the $CO_2$ capture from large $CO_2$ emission sources and transportation to the sea. Injection tests of $CO_2$ on the platform on the sea were carried out in Yeongil Bay of Pohang city in the early 2017. Thus, we were able to perceive the necessary operating conditions of the injection facility, injection characteristic, and knowhow of the injection facility. The results obtained from the injection test shall be utilized for facility upgrades and scale-ups.

Characteristics of Pohang CO2 Geological Sequestration Test Site (포항 이산화탄소 지중저장 시험 사이트 특성)

  • Kim, Seon-Kyoung;Chang, Chandong;Shinn, Youngjae;Kwon, Yikyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • We analyze geological, petrophysical and geomechanical characteristics of a $CO_2$ sequestration test site, Pohang. The target reservoir exists at a depth of 750 m, where porous and permeable sandstones/conglomerates prevail. The reservoir is underlain by thick mudstone formations. We estimate in situ stress conditions using an exploratory wellbore drilled through the target reservoir. The in situ stress condition is characterized by a strike-slip faulting favored stress regime. We discuss various aspects of reservoir fracture pressures and fault reactivation pressures based on the stress magnitudes.

Seismic Imaging of Ocean-bottom Seismic Data for Finding a Carbon Capture and Storage Site: Two-dimensional Reverse-time Migration of Ocean-bottom Seismic Data Acquired in the Pohang Basin, South Korea (이산화탄소 지중저장 부지 선정을 위한 해저면 탄성파 탐사자료의 영상화: 포항 영일만 해저면 탐사자료의 2차원 역시간 구조보정)

  • Park, Sea-Eun;Li, Xiangyue;Kim, Byoung Yeop;Oh, Ju-Won;Min, Dong-Joo;Kim, Hyoung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.78-88
    • /
    • 2021
  • Owing to the abnormal weather conditions due to global warming, carbon capture and storage (CCS) technology has attracted global attention as a countermeasure to reduce CO2 emissions. In the Pohang CCS demonstration project in South Korea, 100 tons of CO2 were successfully injected into the subsurface CO2 storage in early 2017. However, after the 2017 Pohang earthquake, the Pohang CCS demonstration project was suspended due to an increase in social concerns about the safety of the CCS project. In this study, to reconfirm the structural suitability of the CO2 storage site in the Pohang Basin, we employed seismic imaging based on reverse-time migration (RTM) to analyze small-scale ocean-bottom seismic data, which have not been utilized in previous studies. Compared with seismic images using marine streamer data, the continuity of subsurface layers in the RTM image using the ocean-bottom seismic data is improved. Based on the obtained subsurface image, we discuss the structural suitability of the Pohang CO2 storage site.

Numerical Analysis of Phase Behavior and Flow Properties in an Injection Tubing during Gas Phase CO2 Injection : Application of Demonstration-scale Offshore CO2 Storage Project in the Pohang Basin, Korea (기체상태의 CO2 주입시 주입관내 상변화 및 유동 특성의 수치해석적 연구 : 포항분지 해상 중소규모 CO2 지중저장 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeong-Min;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.10-18
    • /
    • 2021
  • CO2 storage technology in an aquifer is one of the most effective way to decrease global warming due to a high storage capacity and economics. A demonstration-scale offshore CO2 storage project was performed in a geological deep aquifer in the Pohang Basin, Korea for a technological development of large-scale CO2 storage. A challenging issue in the early design stage of the project was to establish the proper injectivity during CO2 injection. To solve this issue, injection conditions were calculated by calculating injection rate, pressure, temperature, CO2 phase change, and thermodynamic properties. For this study, we simulated and numerically analyzed CO2 phase change from gas to supercritical phase and flow behavior in transport piping and injection tubing using OLGA program. Our results provide the injectivity conditions of CO2 injection system combined with a bottomhole pressure of an aquifer.

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

$CO_2$ Transport for CCS Application in Republic of Korea (이산화탄소 포집 및 저장 실용화를 위한 대한민국에서의 이산화탄소 수송)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.18-29
    • /
    • 2010
  • Offshore subsurface storage of $CO_2$ is regarded as one of the most promising options to response severe climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the offshore subsurface geological structure such as the depleted gas reservoir and deep sea saline aquifer. Since 2005, we have developed relevant technologies for marine geological storage of $CO_2$. Those technologies include possible storage site surveys and basic designs for $CO_2$ transport and storage processes. To design a reliable $CO_2$ marine geological storage system, we devised a hypothetical scenario and used a numerical simulation tool to study its detailed processes. The process of transport $CO_2$ from the onshore capture sites to the offshore storage sites can be simulated with a thermodynamic equation of state. Before going to main calculation of process design, we compared and analyzed the relevant equation of states. To evaluate the predictive accuracies of the examined equation of states, we compare the results of numerical calculations with experimental reference data. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_{2}O$, $SO_{\chi}$, $H_{2}S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. This paper analyzes the major design parameters that are useful for constructing onshore and offshore $CO_2$ transport systems. On the basis of a parametric study of the hypothetical scenario, we suggest relevant variation ranges for the design parameters, particularly the flow rate, diameter, temperature, and pressure.

Result of CO2 Geological Storage Site Survey for Small-scale Demonstration in Pohang Basin, Yeongil Bay, SE Korea (영일만 해상 포항분지 소규모 CO2 지중저장 실증을 위한 부지 탐사 결과)

  • Shinn, Young Jae;Kwon, Yi Kyun;Yoon, Jong-Ryeol;Kim, Byoung-Yeop;Cheong, Snons
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.161-174
    • /
    • 2018
  • $CO_2$ storage site for small-scale demonstration has been investigated in Yeongil Bay, Pohang, SE Korea, using seismic survey and exploration well data. We found a potential storage formation consisting mainly of conglomerate and sandstone. The storage formation unconformably overlies volcanic basement rocks that are located in a depth from 650 to 950 m (below sea level). The depth of the storage formation is suitable for injecting supercritical $CO_2$ in the Pohang Basin. The average thickness of the storage formation is about 123 m, which possibly provides sufficient capacity at the level of small-scale storage demonstration. The overlying fine-grained deposits consist mainly of marine hemipelagic muds and interlayered turbidite sands. The overlying formation is considered as a good seal rock that is over 600 m thick and widely distributed in the onshore and offshore portions of the basin. NNE-trending faults found in the study area likely formed at basement level, probably not continue to seafloor. Such faults are interpreted as syndepositional faults involved to the basin initiation. This study reveals that the offshore area of the Pohang Basin contains deep geological formations suitable for small-scale $CO_2$ storage demonstration.